Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Opt Express ; 15(2): 524-539, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38404320

ABSTRACT

In photoacoustic tomography (PAT), imaging speed is an essential metric that is restricted by the pulse laser repetition rate and the number of channels on the data acquisition card (DAQ). Reconstructing the initial sound pressure distribution with fewer elements can significantly reduce hardware costs and back-end acquisition pressure. However, undersampling will result in artefacts in the photoacoustic image, degrading its quality. Dictionary learning (DL) has been utilised for various image reconstruction techniques, but they disregard the uniformity of pixels in overlapping blocks. Therefore, we propose a compressive sensing (CS) reconstruction algorithm for circular array PAT based on gradient domain convolutional sparse coding (CSCGR). A small number of non-zero signal positions in the sparsely encoded feature map are used as partially known support (PKS) in the reconstruction procedure. The CS-CSCGR-PKS-based reconstruction algorithm can use fewer ultrasound transducers for signal acquisition while maintaining image fidelity. We demonstrated the effectiveness of this algorithm in sparse imaging through imaging experiments on the mouse torso, brain, and human fingers. Reducing the number of array elements while ensuring imaging quality effectively reduces equipment hardware costs and improves imaging speed.

2.
Pharmaceutics ; 15(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36839875

ABSTRACT

Photothermal therapy (PTT) is a new type of tumor treatment technology that is noninvasive, repeatable, and does not involve radiation. Owing to the lack of real-time and accurate noninvasive temperature measurement technology in current PTT surgical procedures, empirical and open-loop treatment laser power control mode inevitably leads to overtreatment. Thermal radiation causes irreversible damage to normal tissue around cancer tissue and seriously affects the therapeutic effect of PTT and other therapies conducted at the same time. Therefore, real-time measurement and control of the temperature and thermal damage of the therapeutic target are critical to the success of PTT. To improve the accuracy and safety of PTT, we propose a multi-wavelength photoacoustic (PA) temperature feedback based PTT method and system. PA thermometry information at different wavelengths is mutually corrected, and the therapeutic light dose is regulated in real time to accurately control the treatment temperature. The experimental results on the swine blood sample confirm that the proposed method can realize real-time temperature measurement and control of the target area with an accuracy of 0.56 °C and 0.68 °C, demonstrating its good prospects for application.

SELECTION OF CITATIONS
SEARCH DETAIL