Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 172
1.
Dev Psychobiol ; 66(4): e22481, 2024 May.
Article En | MEDLINE | ID: mdl-38538956

This study explored the interactions among prenatal stress, child sex, and polygenic risk scores (PGS) for attention-deficit/hyperactivity disorder (ADHD) on structural developmental changes of brain regions implicated in ADHD. We used data from two population-based birth cohorts: Growing Up in Singapore Towards healthy Outcomes (GUSTO) from Singapore (n = 113) and Generation R from Rotterdam, the Netherlands (n = 433). Prenatal stress was assessed using questionnaires. We obtained latent constructs of prenatal adversity and prenatal mood problems using confirmatory factor analyses. The participants were genotyped using genome-wide single nucleotide polymorphism arrays, and ADHD PGSs were computed. Magnetic resonance imaging scans were acquired at 4.5 and 6 years (GUSTO), and at 10 and 14 years (Generation R). We estimated the age-related rate of change for brain outcomes related to ADHD and performed (1) prenatal stress by sex interaction models, (2) prenatal stress by ADHD PGS interaction models, and (3) 3-way interaction models, including prenatal stress, sex, and ADHD PGS. We observed an interaction between prenatal stress and ADHD PGS on mean cortical thickness annual rate of change in Generation R (i.e., in individuals with higher ADHD PGS, higher prenatal stress was associated with a lower rate of cortical thinning, whereas in individuals with lower ADHD PGS, higher prenatal stress was associated with a higher rate of cortical thinning). None of the other tested interactions were statistically significant. Higher prenatal stress may promote a slower brain developmental rate during adolescence in individuals with higher ADHD genetic vulnerability, whereas it may promote a faster brain developmental rate in individuals with lower ADHD genetic vulnerability.


Attention Deficit Disorder with Hyperactivity , Child , Adolescent , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Cerebral Cortical Thinning , Brain/diagnostic imaging , Genetic Risk Score , Multifactorial Inheritance
3.
Nat Neurosci ; 27(1): 176-186, 2024 Jan.
Article En | MEDLINE | ID: mdl-37996530

The human brain grows quickly during infancy and early childhood, but factors influencing brain maturation in this period remain poorly understood. To address this gap, we harmonized data from eight diverse cohorts, creating one of the largest pediatric neuroimaging datasets to date focused on birth to 6 years of age. We mapped the developmental trajectory of intracranial and subcortical volumes in ∼2,000 children and studied how sociodemographic factors and adverse birth outcomes influence brain structure and cognition. The amygdala was the first subcortical volume to mature, whereas the thalamus exhibited protracted development. Males had larger brain volumes than females, and children born preterm or with low birthweight showed catch-up growth with age. Socioeconomic factors exerted region- and time-specific effects. Regarding cognition, males scored lower than females; preterm birth affected all developmental areas tested, and socioeconomic factors affected visual reception and receptive language. Brain-cognition correlations revealed region-specific associations.


Premature Birth , Male , Female , Humans , Infant, Newborn , Child, Preschool , Child , Cognition , Brain/diagnostic imaging , Neuroimaging , Magnetic Resonance Imaging
4.
iScience ; 26(12): 108560, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38089577

Metformin prevents progression of non-alcoholic fatty liver disease (NAFLD). However, the potential mechanism is not entirely understood. Ferroptosis, a recently recognized nonapoptotic form of regulated cell death, has been reported to be involved in the pathogenesis of NAFLD. Here, we investigated the effects of metformin on ferroptosis and its potential mechanism in NAFLD. We found that metformin prevented the progression of NAFLD, and alleviated hepatic iron overload (HIO), ferroptosis and upregulated ferroportin (FPN) expression in vivo and in vitro. Mechanically, metformin reduced the lysosomal degradation pathway of FPN through activation AMPK, thus upregulated the expression of FPN protein, alleviated HIO and ferroptosis, and prevented progression of NAFLD. These findings discover a mechanism of metformin, suggesting that targeting FPN may have the therapeutic potential for treating NAFLD and related disorders.

5.
Front Microbiol ; 14: 1295869, 2023.
Article En | MEDLINE | ID: mdl-38130943

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide. Circadian disruptors, such as chronic jet lag (CJ), may be new risk factors for MAFLD development. However, the roles of CJ on MAFLD are insufficiently understood, with mechanisms remaining elusive. Studies suggest a link between gut microbiome dysbiosis and MAFLD, but most of the studies are mainly focused on gut bacteria, ignoring other components of gut microbes, such as gut fungi (mycobiome), and few studies have addressed the rhythm of the gut fungi. This study explored the effects of CJ on MAFLD and its related microbiotic and mycobiotic mechanisms in mice fed a high fat and high fructose diet (HFHFD). Forty-eight C57BL6J male mice were divided into four groups: mice on a normal diet exposed to a normal circadian cycle (ND-NC), mice on a normal diet subjected to CJ (ND-CJ), mice on a HFHFD exposed to a normal circadian cycle (HFHFD-NC), and mice on a HFHFD subjected to CJ (HFHFD-CJ). After 16 weeks, the composition and rhythm of microbiota and mycobiome in colon contents were compared among groups. The results showed that CJ exacerbated hepatic steatohepatitis in the HFHFD-fed mice. Compared with HFHFD-NC mice, HFHFD-CJ mice had increases in Aspergillus, Blumeria and lower abundances of Akkermansia, Lactococcus, Prevotella, Clostridium, Bifidobacterium, Wickerhamomyces, and Saccharomycopsis genera. The fungi-bacterial interaction network became more complex after HFHFD and/or CJ interventions. The study revealed that CJ altered the composition and structure of the gut bacteria and fungi, disrupted the rhythmic oscillation of the gut microbiota and mycobiome, affected interactions among the gut microbiome, and promoted the progression of MAFLD in HFHFD mice.

6.
Med Image Anal ; 90: 102921, 2023 Dec.
Article En | MEDLINE | ID: mdl-37666116

Deep learning on resting-state functional MRI (rs-fMRI) has shown great success in predicting a single cognition or mental disease. Nevertheless, cognitive functions or mental diseases may share neural mechanisms that can benefit their prediction/classification. We propose a multi-level and joint attention (ML-Joint-Att) network to learn high-order representations of brain functional connectivities that are specific and shared across multiple tasks. We design the ML-Joint-Att network with edge and node convolutional operators, an adaptive inception module, and three attention modules, including network-wise, region-wise, and region-wise joint attention modules. The adaptive inception learns brain functional connectivity at multiple spatial scales. The network-wise and region-wise attention modules take the multi-scale functional connectivities as input and learn features at the network and regional levels for individual tasks. Moreover, the joint attention module is designed as region-wise joint attention to learn shared brain features that contribute to and compensate for the prediction of multiple tasks. We employed the Adolescent Brain Cognitive Development (ABCD) dataset (n =9092) to evaluate the ML-Joint-Att network for the prediction of cognitive flexibility and inhibition. Our experiments demonstrated the usefulness of the three attention modules and identified brain functional connectivities and regions specific and common between cognitive flexibility and inhibition. In particular, the joint attention module can significantly improve the prediction of both cognitive functions. Moreover, leave-one-site cross-validation showed that the ML-Joint-Att network is robust to independent samples obtained from different sites of the ABCD study. Our network outperformed existing machine learning techniques, including Brain Bias Set (BBS), spatio-temporal graph convolution network (ST-GCN), and BrainNetCNN. We demonstrated the generalization of our method to other applications, such as the prediction of fluid intelligence and crystallized intelligence, which also outperformed the ST-GCN and BrainNetCNN.

7.
Cereb Cortex ; 33(21): 10770-10783, 2023 10 14.
Article En | MEDLINE | ID: mdl-37727985

It is well known that functional magnetic resonance imaging (fMRI) is a widely used tool for studying brain activity. Recent research has shown that fluctuations in fMRI data can reflect functionally meaningful patterns of brain activity within the white matter. We leveraged resting-state fMRI from an adolescent population to characterize large-scale white matter functional gradients and their formation during adolescence. The white matter showed gray-matter-like unimodal-to-transmodal and sensorimotor-to-visual gradients with specific cognitive associations and a unique superficial-to-deep gradient with nonspecific cognitive associations. We propose two mechanisms for their formation in adolescence. One is a "function-molded" mechanism that may mediate the maturation of the transmodal white matter via the transmodal gray matter. The other is a "structure-root" mechanism that may support the mutual mediation roles of the unimodal and transmodal white matter maturation during adolescence. Thus, the spatial layout of the white matter functional gradients is in concert with the gray matter functional organization. The formation of the white matter functional gradients may be driven by brain anatomical wiring and functional needs.


White Matter , Adolescent , Humans , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Gray Matter/pathology , Magnetic Resonance Imaging , Brain Mapping/methods
8.
Transl Psychiatry ; 13(1): 233, 2023 Jun 29.
Article En | MEDLINE | ID: mdl-37385998

Metabolic syndrome (MetS) is characterized by a constellation of metabolic risk factors, including obesity, hypertriglyceridemia, low high-density lipoprotein (HDL) levels, hypertension, and hyperglycemia, and is associated with stroke and neurodegenerative diseases. This study capitalized on brain structural images and clinical data from the UK Biobank and explored the associations of brain morphology with MetS and brain aging due to MetS. Cortical surface area, thickness, and subcortical volumes were assessed using FreeSurfer. Linear regression was used to examine associations of brain morphology with five MetS components and the MetS severity in a metabolic aging group (N = 23,676, age 62.8 ± 7.5 years). Partial least squares (PLS) were employed to predict brain age using MetS-associated brain morphology. The five MetS components and MetS severity were associated with increased cortical surface area and decreased thickness, particularly in the frontal, temporal, and sensorimotor cortex, and reduced volumes in the basal ganglia. Obesity best explained the variation of brain morphology. Moreover, participants with the most severe MetS had brain age 1-year older than those without MetS. Brain age in patients with stroke (N = 1042), dementia (N = 83), Parkinson's (N = 107), and multiple sclerosis (N = 235) was greater than that in the metabolic aging group. The obesity-related brain morphology had the leading discriminative power. Therefore, the MetS-related brain morphological model can be used for risk assessment of stroke and neurodegenerative diseases. Our findings suggested that prioritizing adjusting obesity among the five metabolic components may be more helpful for improving brain health in aging populations.


Metabolic Syndrome , Neurodegenerative Diseases , Stroke , Humans , Middle Aged , Aged , Infant , Neurodegenerative Diseases/diagnostic imaging , Biological Specimen Banks , Stroke/diagnostic imaging , Brain/diagnostic imaging , Metabolic Syndrome/diagnostic imaging , Obesity/complications , Aging , United Kingdom
9.
Neuroimage ; 275: 120146, 2023 07 15.
Article En | MEDLINE | ID: mdl-37127190

The brain undergoes many changes at pathological and functional levels in healthy aging. This study employed a longitudinal and multimodal imaging dataset from the OASIS-3 study (n = 300) and explored possible relationships between amyloid beta (Aß) accumulation and functional brain organization over time in healthy aging. We used positron emission tomography (PET) with Pittsburgh compound-B (PIB) to quantify the Aß accumulation in the brain and resting-state functional MRI (rs-fMRI) to measure functional connectivity (FC) among brain regions. Each participant had at least 2 to 3 follow-up visits. A linear mixed-effect model was used to examine longitudinal changes of Aß accumulation and FC throughout the whole brain. We found that the limbic and frontoparietal networks had a greater annual Aß accumulation and a slower decline in FC in aging. Additionally, the amount of the Aß deposition in the amygdala network at baseline slowed down the decline in its FC in aging. Furthermore, the functional connectivity of the limbic, default mode network (DMN), and frontoparietal networks accelerated the Aß propagation across their functionally highly connected regions. The functional connectivity of the somatomotor and visual networks accelerated the Aß propagation across the brain regions in the limbic, frontoparietal, and DMN networks. These findings suggested that the slower decline in the functional connectivity of the functional hubs may compensate for their greater Aß accumulation in aging. The Aß propagation from one brain region to the other may depend on their functional connectivity strength.


Aging , Amyloid beta-Peptides , Brain , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Male , Female , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/pathology , Datasets as Topic
10.
Biol Psychiatry ; 93(10): 905-920, 2023 05 15.
Article En | MEDLINE | ID: mdl-36932005

Imaging genetics provides an opportunity to discern associations between genetic variants and brain imaging phenotypes. Historically, the field has focused on adults and adolescents; very few imaging genetics studies have focused on brain development in infancy and early childhood (from birth to age 6 years). This is an important knowledge gap because developmental changes in the brain during the prenatal and early postnatal period are regulated by dynamic gene expression patterns that likely play an important role in establishing an individual's risk for later psychiatric illness and neurodevelopmental disabilities. In this review, we summarize findings from imaging genetics studies spanning from early infancy to early childhood, with a focus on studies examining genetic risk for neuropsychiatric disorders. We also introduce the Organization for Imaging Genomics in Infancy (ORIGINs), a working group of the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium, which was established to facilitate large-scale imaging genetics studies in infancy and early childhood.


Brain , Mental Disorders , Female , Pregnancy , Child, Preschool , Humans , Brain/diagnostic imaging , Mental Disorders/genetics , Neuroimaging/methods , Phenotype
11.
Neuropsychopharmacology ; 48(7): 1042-1051, 2023 06.
Article En | MEDLINE | ID: mdl-36928354

Adolescence is a period of significant brain development and maturation, and it is a time when many mental health problems first emerge. This study aimed to explore a comprehensive map that describes possible pathways from genetic and environmental risks to structural brain organization and psychopathology in adolescents. We included 32 environmental items on developmental adversity, maternal substance use, parental psychopathology, socioeconomic status (SES), school and family environment; 10 child psychopathological scales; polygenic risk scores (PRS) for 10 psychiatric disorders, total problems, and cognitive ability; and structural brain networks in the Adolescent Brain Cognitive Development study (ABCD, n = 9168). Structural equation modeling found two pathways linking SES, brain, and psychopathology. Lower SES was found to be associated with lower structural connectivity in the posterior default mode network and greater salience structural connectivity, and with more severe psychosis and internalizing in youth (p < 0.001). Prematurity and birth weight were associated with early-developed sensorimotor and subcortical networks (p < 0.001). Increased parental psychopathology, decreased SES and school engagement was related to elevated family conflict, psychosis, and externalizing behaviors in youth (p < 0.001). Increased maternal substance use predicted increased developmental adversity, internalizing, and psychosis (p < 0.001). But, polygenic risks for psychiatric disorders had moderate effects on brain structural connectivity and psychopathology in youth. These findings suggest that a range of genetic and environmental factors can influence brain structural organization and psychopathology during adolescence, and that addressing these risk factors may be important for promoting positive mental health outcomes in young people.


Mental Disorders , Substance-Related Disorders , Child , Humans , Adolescent , Longitudinal Studies , Psychopathology , Mental Disorders/psychology , Brain/diagnostic imaging , Substance-Related Disorders/complications
12.
Transl Psychiatry ; 13(1): 38, 2023 02 03.
Article En | MEDLINE | ID: mdl-36737601

Human brain development starts in the embryonic period. Maternal preconception nutrition and nutrient availability to the embryo may influence brain development at this critical period following conception and early cellular differentiation, thereby affecting offspring neurodevelopmental and behavioural disorder risk. However, studying this is challenging due to difficulties in characterizing preconception nutritional status and few studies have objective neurodevelopmental imaging measures in children. We investigated the associations of maternal preconception circulating blood nutrient-related biomarker mixtures (~15 weeks before conception) with child behavioural symptoms (Child Behaviour Checklist (CBCL), aged 3 years) within the Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO) study. The CBCL preschool form evaluates child behaviours based on syndrome scales and Diagnostic and Statistical Manual of Mental Disorders (DSM) oriented scales. These scales consist of internalizing problems, externalizing problems, anxiety problems, pervasive developmental problems, oppositional defiant, etc. We applied data-driven clustering and a method for modelling mixtures (Bayesian kernel machine regression, BKMR) to account for complex, non-linear dependencies between 67 biomarkers. We used effect decomposition analyses to explore the potential mediating role of neonatal (week 1) brain microstructure, specifically orientation dispersion indices (ODI) of 49 cortical and subcortical grey matter regions. We found that higher levels of a nutrient cluster including thiamine, thiamine monophosphate (TMP), pyridoxal phosphate, pyridoxic acid, and pyridoxal were associated with a higher CBCL score for internalizing problems (posterior inclusion probability (PIP) = 0.768). Specifically, thiamine independently influenced CBCL (Conditional PIP = 0.775). Higher maternal preconception thiamine level was also associated with a lower right subthalamic nucleus ODI (P-value = 0.01) while a lower right subthalamic nucleus ODI was associated with higher CBCL scores for multiple domains (P-value < 0.05). One potential mechanism is the suboptimal metabolism of free thiamine to active vitamin B1, but additional follow-up and replication studies in other cohorts are needed.


Behavioral Symptoms , Mothers , Female , Infant, Newborn , Humans , Child , Child, Preschool , Bayes Theorem , Brain/diagnostic imaging , Biomarkers , Thiamine
13.
Neural Netw ; 159: 14-24, 2023 Feb.
Article En | MEDLINE | ID: mdl-36525914

Convolutional neural networks (CNNs) have been increasingly used in the computer-aided diagnosis of Alzheimer's Disease (AD). This study takes the advantage of the 2D-slice CNN fast computation and ensemble approaches to develop a Monte Carlo Ensemble Neural Network (MCENN) by introducing Monte Carlo sampling and an ensemble neural network in the integration with ResNet50. Our goals are to improve the 2D-slice CNN performance and to design the MCENN model insensitive to image resolution. Unlike traditional ensemble approaches with multiple base learners, our MCENN model incorporates one neural network learner and generates a large number of possible classification decisions via Monte Carlo sampling of feature importance within the combined slices. This can overcome the main weakness of the lack of 3D brain anatomical information in 2D-slice CNNs and develop a neural network to learn the 3D relevance of the features across multiple slices. Brain images from Alzheimer's Disease Neuroimaging Initiative (ADNI, 7199 scans), the Open Access Series of Imaging Studies-3 (OASIS-3, 1992 scans), and a clinical sample (239 scans) are used to evaluate the performance of the MCENN model for the classification of cognitively normal (CN), patients with mild cognitive impairment (MCI) and AD. Our MCENN with a small number of slices and minimal image processing (rigid transformation, intensity normalization, skull stripping) achieves the AD classification accuracy of 90%, better than existing 2D-slice CNNs (accuracy: 63%∼84%) and 3D CNNs (accuracy: 74%∼88%). Furthermore, the MCENN is robust to be trained in the ADNI dataset and applied to the OASIS-3 dataset and the clinical sample. Our experiments show that the AD classification accuracy of the MCENN model is comparable when using high- and low-resolution brain images, suggesting the insensitivity of the MCENN to image resolution. Hence, the MCENN does not require high-resolution 3D brain structural images and comprehensive image processing, which supports its potential use in a clinical setting.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Neuroimaging/methods , Diagnosis, Computer-Assisted , Cognitive Dysfunction/diagnostic imaging
14.
Inf Process Med Imaging ; 13939: 278-290, 2023 Jun.
Article En | MEDLINE | ID: mdl-38774602

This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the k-th Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence.

15.
Neuroimage ; 260: 119482, 2022 10 15.
Article En | MEDLINE | ID: mdl-35842101

Cognitive and psychological development during adolescence is different from one another, which is rooted in individual differences in maturational changes in the adolescent brain. This study employed multi-modal MRI data and characterized interindividual variability in functional connectivity (IVFC) and its associations with cognition and psychopathology using the Philadelphia Neurodevelopmental Cohort (PNC) of 755 youth. We employed resting state functional MRI (rs-fMRI) and diffusion weighted images (DWIs) to estimate brain structural and functional networks. We computed the IVFC of individuals and examined its relation with structural and functional organizations. We further employed sparse partial least squares (sparse-PLS) and meta-analysis to examine the developmental associations of the IVFC with cognition and transdiagnostic dimensions of psychopathology in early, middle, and late adolescence. Our results revealed that the IVFC spatial topography reflects the brain functional integration and structure-function decoupling. Age effects on the IVFC of association networks were mediated by the FC among the triple networks, including frontoparietal, salience, and default mode networks (DMN), while those of primary and cerebellar networks were mediated by the cerebello-cortical FC. The IVFC of the triple and cerebellar networks explained the variance of executive functions and externalizing behaviors in early adolescence and then the variance of emotion and internalizing and psychosis in middle and late adolescence. We further evaluated this finding via meta-analysis on task-based studies on cognition and psychopathology. These findings implicate the emerging importance of the IVFC of the triple and cerebellar networks in cognitive, emotional, and psychopathological development during adolescence.


Cognition , Psychotic Disorders , Adolescent , Brain , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods
16.
Sci Data ; 9(1): 352, 2022 06 20.
Article En | MEDLINE | ID: mdl-35725852

Brain atlases play important roles in studying anatomy and function of the brain. As increasing interests in multi-modal magnetic resonance imaging (MRI) approaches, such as combining structural MRI, diffusion weighted imaging (DWI), and resting-state functional MRI (rs-fMRI), there is a need to construct integrated brain atlases based on these three imaging modalities. This study constructed a multi-modal brain atlas for a Chinese aging population (n = 180, age: 22-79 years), which consists of a T1 atlas showing the brain morphology, a high angular resolution diffusion imaging (HARDI) atlas delineating the complex fiber architecture, and a rs-fMRI atlas reflecting brain intrinsic functional organization in one stereotaxic coordinate. We employed large deformation diffeomorphic metric mapping (LDDMM) and unbiased diffeomorphic atlas generation to simultaneously generate the T1 and HARDI atlases. Using spectral clustering, we generated 20 brain functional networks from rs-fMRI data. We demonstrated the use of the atlas to explore the coherent markers among the brain morphology, functional networks, and white matter tracts for aging and gender using joint independent component analysis.


Brain , White Matter , Adult , Aged , Algorithms , Brain/anatomy & histology , Brain/diagnostic imaging , Brain Mapping , China , Diffusion Magnetic Resonance Imaging , Humans , Middle Aged , White Matter/anatomy & histology , White Matter/diagnostic imaging , Young Adult
17.
Dev Cogn Neurosci ; 55: 101107, 2022 06.
Article En | MEDLINE | ID: mdl-35413663

Early differences in reward behavior have been linked to executive functioning development. The nucleus accumbens (NAc) and orbitofrontal cortex (OFC) are activated by reward-related tasks and identified as key nodes of the brain circuit that underlie reward processing. We aimed to investigate the relation between NAc-OFC structural and functional connectivity in preschool children, as well as associations with future reward sensitivity and executive function. We showed that NAc-OFC structural and functional connectivity were not significantly associated in preschool children, but both independently predicted sensitivity to reward in males in a left-lateralized manner. Moreover, significant NAc-OFC structure-function coupling was only found in individuals who performed poorly on executive function tasks in later childhood, but not in the middle- and high-performing groups. As structure-function coupling is proposed to measure functional specialization, this finding suggests premature functional specialization within the reward network, which may impede dynamic communication with other regions, affects executive function development. Our study also highlights the utility of multimodal imaging data integration when studying the effects of reward network functional flexibility in the preschool age, a critical period in brain and executive function development.


Executive Function , Magnetic Resonance Imaging , Brain , Child , Child, Preschool , Humans , Magnetic Resonance Imaging/methods , Male , Nucleus Accumbens , Reward
18.
Neuroimage Clin ; 34: 102993, 2022.
Article En | MEDLINE | ID: mdl-35344803

This study employed a deep learning longitudinal model, graph convolutional and recurrent neural network (graph-CNN-RNN), on a series of brain structural MRI scans for AD prognosis. It characterized whole-brain morphology via incorporating longitudinal cortical and subcortical morphology and defined a probabilistic risk for the prediction of AD as a function of age prior to clinical diagnosis. The graph-CNN-RNN model was trained on half of the Alzheimer's Disease Neuroimaging Initiative dataset (ADNI, n = 1559) and validated on the other half of the ADNI dataset and the Open Access Series of Imaging Studies-3 (OASIS-3, n = 930). Our findings demonstrated that the graph-CNN-RNN can reliably and robustly diagnose AD at the accuracy rate of 85% and above across all the time points for both datasets. The graph-CNN-RNN predicted the AD conversion from 0 to 4 years before the AD onset at ∼80% of accuracy. The AD probabilistic risk was associated with clinical traits, cognition, and amyloid burden assessed using [18F]-Florbetapir (AV45) positron emission tomography (PET) across all the time points. The graph-CNN-RNN provided the quantitative trajectory of brain morphology from prognosis to overt stages of AD. Such a deep learning tool and the AD probabilistic risk have great potential in clinical applications for AD prognosis.


Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Tomography, X-Ray Computed
19.
Med Image Anal ; 77: 102370, 2022 04.
Article En | MEDLINE | ID: mdl-35144197

We develop a deep learning framework, spatio-temporal directed acyclic graph with attention mechanisms (ST-DAG-Att), to predict cognition and disease using functional magnetic resonance imaging (fMRI). This ST-DAG-Att framework comprises of two neural networks, (1) spatio-temporal graph convolutional network (ST-graph-conv) to learn the spatial and temporal information of functional time series at multiple temporal and spatial graph scales, where the graph is represented by the brain functional network, the spatial convolution is over the space of this graph, and the temporal convolution is over the time dimension; (2) functional connectivity convolutional network (FC-conv) to learn functional connectivity features, where the functional connectivity is derived from embedded multi-scale fMRI time series and the convolutional operation is applied along both edge and node dimensions of the brain functional network. This framework also consists of an attention component, i.e., functional connectivity-based spatial attention (FC-SAtt), that generates a spatial attention map through learning the local dependency among high-level features of functional connectivity and emphasizing meaningful brain regions. Moreover, both the ST-graph-conv and FC-conv networks are designed as feed-forward models structured as directed acyclic graphs (DAGs). Our experiments employ two large-scale datasets, Adolescent Brain Cognitive Development (ABCD, n=7693) and Open Access Series of Imaging Study-3 (OASIS-3, n=1786). Our results show that the ST-DAG-Att model is generalizable from cognition prediction to age prediction. It is robust to independent samples obtained from different sites of the ABCD study. It outperforms the existing machine learning techniques, including support vector regression (SVR), elastic net's mixture with random forest, spatio-temporal graph convolution, and BrainNetCNN.


Brain , Magnetic Resonance Imaging , Adolescent , Brain/diagnostic imaging , Brain Mapping , Humans , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Time Factors
20.
J Am Acad Child Adolesc Psychiatry ; 61(3): 392-401, 2022 03.
Article En | MEDLINE | ID: mdl-34146666

OBJECTIVE: Maternal depression during pregnancy has long-term impacts on offspring. This study used neuroimaging and behavioral data from children aged 4 to 6 years and investigated whether prenatal maternal depressive symptoms (pre-MDS) associated with child cortical morphological development and subsequent reward-related behaviors in preschoolers. METHOD: Pre-MDS was measured using the Edinburgh Postnatal Depression Scale at 26 weeks of pregnancy. Children (n = 130) underwent structural magnetic resonance imaging (MRI) at both 4 and 6 years of age. Child sensitivity to reward and punishment was reported by mothers when children were 6 years of age. Linear mixed-effect models examined pre-MDS associations with child cortical thickness and surface area. Mediation analysis examined whether cortical development mediated associations between pre-MDS and child sensitivity to reward and punishment. RESULTS: The 3-way interactions of pre-MDS, age, and sex on cortical thickness and surface area were not statistically significant. We found a significant interaction of pre-MDS with sex on the cortical surface area but not on thickness or their growth from 4 to 6 years, adjusting for ethnicity, socioeconomic status, baseline age, and postnatal MDS as covariates. Higher pre-MDS scores were associated with larger surface areas in the prefrontal cortex, superior temporal gyrus, and superior parietal lobe (SPL) in boys, whereas the opposite pattern was seen in girls. The SPL surface area mediated the relationship between pre-MDS and sensitivity to reward in girls. CONCLUSION: Prenatal maternal depression alters the cortical morphology of pre-schoolers in a sex-dependent manner.


Depression , Prenatal Exposure Delayed Effects , Child , Child, Preschool , Female , Humans , Longitudinal Studies , Male , Mothers , Pregnancy , Reward
...