Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
3D Print Addit Manuf ; 11(1): 24-39, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38389685

ABSTRACT

Invar 36 exhibits extremely low thermal expansion coefficients at low temperatures but also low yield strength (YS), which greatly restricts its application as a structural material. In this study, a small fraction of pure titanium powder particles was added into Invar 36 by powder mixing and selective laser melting (SLM) with the aim of further improving tensile strengths of Invar 36. It was found that increased laser power led to increased grain size and to slight decrease in YS in Invar 36. During SLM, amorphous SiO2 nanoparticles were formed and homogeneously distributed in Invar 36. With the addition of 2 at% Ti powder particles, grains became larger and the crystallographic texture along <001> and <111> increased to some extent. Moreover, the bottom of solidified melt pools was segregated with Ti while the matrix was homogeneously decorated by a great number of nano-sized spherical Ti2O3 particles. These particles were found to have effectively impeded dislocation motion during plastic deformation, leading to significant improvement in 0.2% YS and ultimate tensile strength. The above precipitation led to consumption of a small amount of Ni from the matrix, which caused a minor compromise in thermal expansion properties. Nonetheless, the newly synthesized Invar 36-Ti alloy still exhibits low thermal expansion coefficients at low temperatures and remarkably enhanced tensile strengths.

2.
3D Print Addit Manuf ; 11(1): 40-49, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38389665

ABSTRACT

Selective laser melting of Ti-48Al-2Cr-2Nb usually ends up with serious cracking. The cracking mechanism, however, remains elusive. In this study, both bulk samples and samples containing only several layers were prepared and investigated. It is shown that a freshly built layer is dominated by single α2 phase. γ started to form from α2 during subsequent thermal cycling due to reheating effects and its volume fraction increased continuously with increased thermal cycles. The γ phase contains higher geometrically necessary dislocation (GND) density than α2. This could be due to its relatively lower hardness and higher thermal expansion coefficient, which made it easier to deform under stresses. With higher GND and thus probably higher distortion energy, the γ experienced more extensive recrystallization than α2 during reheating. Cracks are more liable to initiate from the interior of α2 or the γ/α2 interfaces, which could be due to incompatible deformation between the two phases.

3.
Micromachines (Basel) ; 15(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38258223

ABSTRACT

Additive manufacturing of titanium alloys usually ends up with large columnar grains due to the steep thermal gradients within melt pools during solidification. In this study, ZrN particles were added into a beta titanium alloy, Ti-10V-2Fe-3Al, with the aim of promoting columnar-to-equiaxed grain transition during laser bed powder fusion (L-PBF). It was found that the addition of ZrN leads to the development of alternate layers of equiaxed grains and refined columnar grains, which is in sharp contrast to the dominant large columnar grains formed in the pure L-PBF-processed titanium alloy. An investigation on single laser melted tracks revealed that the sample with added ZrN showed fine equiaxed grains in the upper regions of solidified melt pools and columnar grains in the lower regions, whereas the solidified melt pools of the pure titanium alloy were dominated by large columnar grains due to epitaxial growth from the previous layer. The formation of equiaxed grains in the former sample is attributed to multiple factors including an increased gradient of liquidus temperature due to the solution of N and a reduced actual melt temperature gradient due to the melting of high-melting-point ZrN particles, which would have expanded constitutional undercooling, a grain growth restriction effect induced by the segregation of N along grain boundaries and the accumulation of unmelted ZrN particles in the upper regions of melt pools. The addition of ZrN also resulted in significant α precipitation, which showed strong variant selection and was found to be driven by laser reheating and the N solution in the matrix.

4.
Materials (Basel) ; 14(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921804

ABSTRACT

Ti-6Al-2Sn-4Zr-6Mo is one of the most important titanium alloys characterised by its high strength, fatigue, and toughness properties, making it a popular material for aerospace and biomedical applications. However, no studies have been reported on processing this alloy using laser powder bed fusion. In this paper, a deep learning neural network (DLNN) was introduced to rationalise and predict the densification and hardness due to Laser Powder Bed Fusion of Ti-6Al-2Sn-4Zr-6Mo alloy. The process optimisation results showed that near-full densification is achieved in Ti-6Al-2Sn-4Zr-6Mo alloy samples fabricated using an energy density of 77-113 J/mm3. Furthermore, the hardness of the builds was found to increase with increasing the laser energy density. Porosity and the hardness measurements were found to be sensitive to the island size, especially at high energy density. Hot isostatic pressing (HIP) was able to eliminate the porosity, increase the hardness, and achieve the desirable α and ß phases. The developed model was validated and used to produce process maps. The trained deep learning neural network model showed the highest accuracy with a mean percentage error of 3% and 0.2% for the porosity and hardness. The results showed that deep learning neural networks could be an efficient tool for predicting materials properties using small data.

5.
Sci Rep ; 10(1): 15870, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32985532

ABSTRACT

Metallic additive manufacturing, particularly selective laser melting (SLM), usually involves rapid heating and cooling and steep thermal gradients within melt pools, making it extremely difficult to achieve effective control over microstructure. In this study, we propose a new in-situ approach which involves laser reheating/re-melting of SLM-processed layers to engineer metallic materials. The approach involves alternate laser melting of a powder layer at a high laser power and laser reheating of the newly formed solidified layer at a low or medium laser power. This strategy was applied to Ti-6Al-4V with a range of laser powers being used to reheat/re-melt solidified layers. It was found that the SLM-processed sample without undergoing laser reheating consist of a pure martensitic needle structure whereas those that were subjected to laser reheating/re-melting all consist of horizontal (α + ß) bands embedded in martensitic α' matrix, leading to development of a sandwich microstructure in these samples. Within the (α + ß) bands, ß exist as nano-sized precipitates or laths and have a Burgers orientation relationship with α matrix, i.e., {0001}⍺//{110}ß and ⟨11[Formula: see text]0⟩⍺//⟨111⟩ß. The width of (α + ß) banded structure increased first with increased laser power to a highest value and then decreased with further increased laser power. With the presence of these banded structures, both high strengths and enhanced ductility have been achieved in the SLM-processed samples. The current findings pave the way for the novel laser reheating approach for in-situ microstructural engineering and control during metallic additive manufacturing.

6.
Sci Rep ; 8(1): 7785, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29773819

ABSTRACT

316L stainless steel samples have been prepared by selective laser melting (SLM) using a pulsed laser mode and different laser powers and scanning patterns. The as-fabricated samples were found to be dominated by clusters of nano-sized γ needles or cells. TEM imaging shows that these needles contain a high population of dislocations while TEM-EDX analysis reveals high chemical homogeneity throughout the as-fabricated samples as evidenced by the fact that there is even no micro-/nano-segregation at interfaces between neighbouring γ needles. The good chemical homogeneity is attributed to the extremely high cooling rate after SLM (>106 °C/s) and the formation of Si- and Mn-oxides that distribute randomly in the current samples. The laser-processed samples show both superior strength and ductility as compared with conventionally manufactured counterparts. TEM examination on the deformed specimens reveals a significantly high density of dislocations and a great number of twinning within nano-needles, suggesting that the plastic deformation has been governed by both gliding of dislocations and twinning deformation, which is believed to be responsible for the simultaneous acquisition of superior strength and ductility. Finally, laser power shows a much more dominant role than laser scanning pattern in porosity and grain size development for the SLM-processed 316L stainless steel samples.

SELECTION OF CITATIONS
SEARCH DETAIL