Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Brain Behav ; 14(7): e3610, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38945806

ABSTRACT

INTRODUCTION: Pregnant women may need to undergo non-obstetric surgery under general anesthesia owing to medical needs, and pregnant women frequently experience sleep disturbances during late gestation. Preclinical studies demonstrated that maternal isoflurane exposure (MISO) or maternal sleep deprivation (MSD) contributed to cognitive impairments in offspring. Research studies in mice have revealed that SD can aggravate isoflurane-induced cognitive deficits. However, it remains unclear whether MSD aggravates MISO-induced cognitive deficits in offspring. The purpose of this research was to explore the combined effects of MSD and MISO on offspring cognitive function and the role of neuroinflammation and synaptic function in the process of MSD + MISO. METHODS: Pregnant mice were exposed to 1.4% isoflurane by inhalation for 4 h on gestational day (GD) 14. Dams were then subjected to SD for 6 h (12:00-18:00 h) during GD15-21. At 3 months of age, the offspring mice were subjected to the Morris water maze test to assess cognitive function. Then the levels of inflammatory and anti-inflammatory markers and synaptic function-related proteins were assessed using molecular biology methods. RESULTS: The results of this study demonstrated that MISO led to cognitive dysfunction, an effect that was aggravated by MSD. In addition, MSD exacerbated the maternal isoflurane inhalation, leading to an enhancement in the expression levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha and a reduction in the hippocampal levels of IL-10, synaptophysin, post-synaptic density-95, growth-associated protein-43, and brain-derived neurotrophic factor. CONCLUSION: Our findings revealed that MSD aggravated the cognitive deficits induced by MISO in male offspring mice, and these results were associated with neuroinflammation and alternations in synaptic function.


Subject(s)
Anesthetics, Inhalation , Cognitive Dysfunction , Hippocampus , Isoflurane , Neuroinflammatory Diseases , Prenatal Exposure Delayed Effects , Sleep Deprivation , Animals , Isoflurane/adverse effects , Isoflurane/pharmacology , Isoflurane/administration & dosage , Female , Cognitive Dysfunction/etiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/physiopathology , Pregnancy , Sleep Deprivation/complications , Sleep Deprivation/physiopathology , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Prenatal Exposure Delayed Effects/physiopathology , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/administration & dosage , Synapses/drug effects , Male , Mice, Inbred C57BL , Maternal Deprivation , Brain-Derived Neurotrophic Factor/metabolism
2.
Zool Res ; 45(3): 679-690, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766749

ABSTRACT

General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.


Subject(s)
Anesthetics, Inhalation , Mice, Inbred C57BL , Neurotransmitter Agents , Propofol , Sevoflurane , Sevoflurane/pharmacology , Animals , Propofol/pharmacology , Neurotransmitter Agents/metabolism , Mice , Anesthetics, Inhalation/pharmacology , Anesthetics, Intravenous/pharmacology , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism
3.
Anesthesiology ; 140(6): 1134-1152, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38498811

ABSTRACT

BACKGROUND: Dexmedetomidine has repeatedly shown to improve anxiety, but the precise neural mechanisms underlying this effect remain incompletely understood. This study aims to explore the role of corticotropin-releasing hormone-producing hypothalamic paraventricular nucleus (CRHPVN) neurons in mediating the anxiolytic effects of dexmedetomidine. METHODS: A social defeat stress mouse model was used to evaluate the anxiolytic effects induced by dexmedetomidine through the elevated plus maze, open-field test, and measurement of serum stress hormone levels. In vivo Ca2+ signal fiber photometry and ex vivo patch-clamp recordings were used to determine the excitability of CRHPVN neurons and investigate the specific mechanism involved. CRHPVN neuron modulation was achieved through chemogenetic activation or inhibition. RESULTS: Compared with saline, dexmedetomidine (40 µg/kg) alleviated anxiety-like behaviors. Additionally, dexmedetomidine reduced CRHPVN neuronal excitability. Chemogenetic activation of CRHPVN neurons decreased the time spent in the open arms of the elevated plus maze and in the central area of the open-field test. Conversely, chemogenetic inhibition of CRHPVN neurons had the opposite effect. Moreover, the suppressive impact of dexmedetomidine on CRHPVN neurons was attenuated by the α2-receptor antagonist yohimbine. CONCLUSIONS: The results indicate that the anxiety-like effects of dexmedetomidine are mediated via α2-adrenergic receptor-triggered inhibition of CRHPVN neuronal excitability in the hypothalamus.


Subject(s)
Anxiety , Dexmedetomidine , Neurons , Paraventricular Hypothalamic Nucleus , Stress, Psychological , Animals , Male , Mice , Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Corticotropin-Releasing Hormone/metabolism , Dexmedetomidine/pharmacology , Disease Models, Animal , Mice, Inbred C57BL , Neurons/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Stress, Psychological/psychology
4.
Brain Behav Immun ; 117: 376-398, 2024 03.
Article in English | MEDLINE | ID: mdl-38320682

ABSTRACT

BACKGROUND: Glutamate metabolism disorder is an important mechanism of sepsis-associated encephalopathy (SAE). Astrocytes regulate glutamate metabolism. In septic mice, α2A adrenoceptor (α2A-AR) activation in the central nervous system provides neuroprotection. α2A-ARs are expressed abundantly in hippocampal astrocytes. This study was performed to determine whether hippocampal astrocytic α2A-AR activation confers neuroprotection against SAE and whether this protective effect is astrocyte specific and achieved by the modulation of glutamate metabolism. METHODS: Male C57BL/6 mice with and without α2A-AR knockdown were subjected to cecal ligation and puncture (CLP). They were treated with intrahippocampal guanfacine (an α2A-AR agonist) or intraperitoneal dexmedetomidine in the presence or absence of dihydrokainic acid [DHK; a glutamate transporter 1 (GLT-1) antagonist] and/or UCPH-101 [a glutamate/aspartate transporter (GLAST) antagonist]. Hippocampal tissue was collected for the measurement of astrocyte reactivity, GLT-1 and GLAST expression, and glutamate receptor subunit 2B (GluN2B) phosphorylation. In vivo real-time extracellular glutamate concentrations in the hippocampus were measured by ultra-performance liquid chromatography tandem mass spectrometry combined with microdialysis, and in vivo real-time hippocampal glutamatergic neuron excitability was assessed by calcium imaging. The mice were subjected to the Barnes maze and fear conditioning tests to assess their learning and memory. Golgi staining was performed to assess changes in the hippocampal synaptic structure. In vitro, primary astrocytes with and without α2A-AR knockdown were stimulated with lipopolysaccharide (LPS) and treated with guanfacine or dexmedetomidine in the presence or absence of 8-bromo- cyclic adenosine monophosphate (8-Br-cAMP, a cAMP analog). LPS-treated primary and BV2 microglia were also treated with guanfacine or dexmedetomidine. Astrocyte reactivity, PKA catalytic subunit, GLT-1 an GLAST expression were determined in primary astrocytes. Interleukin-1ß, interleukin-6 and tumor necrosis factor-alpha in the medium of microglia culture were measured. RESULTS: CLP induced synaptic injury, impaired neurocognitive function, increased astrocyte reactivity and reduced GLT-1 and GLAST expression in the hippocampus of mice. The extracellular glutamate concentration, phosphorylation of GluN2B at Tyr-1472 and glutamatergic neuron excitability in the hippocampus were increased in the hippocampus of septic mice. Intraperitoneal dexmedetomidine or intrahippocampal guanfacine administration attenuated these effects. Hippocampal astrocytes expressed abundant α2A-ARs; expression was also detected in neurons but not microglia. Specific knockdown of α2A-ARs in hippocampal astrocytes and simultaneous intrahippocampal DHK and UCPH-101 administration blocked the neuroprotective effects of dexmedetomidine and guanfacine. Intrahippocampal administration of DHK or UCPH-101 alone had no such effect. In vitro, guanfacine or dexmedetomidine inhibited astrocyte reactivity, reduced PKA catalytic subunit expression, and increased GLT-1 and GLAST expression in primary astrocytes but not in primary astrocytes that received α2A-AR knockdown or were treated with 8-Br-cAMP. Guanfacine or dexmedetomidine inhibited microglial reactivity in BV2 but not primary microglia. CONCLUSIONS: Our results suggest that neurocognitive protection against SAE after hippocampal α2A-AR activation is astrocyte specific. This protection may involve the inhibition of astrocyte reactivity and alleviation of glutamate neurotoxicity, thereby reducing synaptic injury. The cAMP/protein kinase A (PKA) signaling pathway is a potential cellular mechanism by which activating α2A-AR modulates astrocytic function.


Subject(s)
Dexmedetomidine , Sepsis-Associated Encephalopathy , Sepsis , Male , Animals , Mice , Mice, Inbred C57BL , Glutamic Acid , Astrocytes , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Guanfacine , Lipopolysaccharides , Hippocampus , Sepsis/complications
5.
J Nanobiotechnology ; 21(1): 462, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041074

ABSTRACT

Chemotherapy can cause severe pain for patients, but there are currently no satisfactory methods of pain relief. Enhancing the efficacy of chemotherapy to reduce the side effects of high-dose chemotherapeutic drugs remains a major challenge. Moreover, the treatment of chemotherapy-induced peripheral neuropathic pain (CIPNP) is separate from chemotherapy in the clinical setting, causing inconvenience to cancer patients. In view of the many obstacles mentioned above, we developed a strategy to incorporate local anesthetic (LA) into a cisplatin-loaded PF127 hydrogel for painless potentiated chemotherapy. We found that multiple administrations of cisplatin-loaded PF127 hydrogels (PFC) evoked severe CIPNP, which correlated with increased pERK-positive neurons in the dorsal root ganglion (DRG). However, incorporating ropivacaine into the PFC relieved PFC-induced CIPNP for more than ten hours and decreased the number of pERK-positive neurons in the DRG. Moreover, incorporating ropivacaine into the PFC for chemotherapy is found to upregulate major histocompatibility complex class I (MHC-I) expression in tumor cells and promote the infiltration of cytotoxic T lymphocytes (CD8+ T cells) in tumors, thereby potentiating chemotherapy efficacy. This study proposes that LA can be used as an immunemodulator to enhance the effectiveness of chemotherapy, providing new ideas for painless cancer treatment.


Subject(s)
Antineoplastic Agents , Neuralgia , Humans , Ropivacaine/adverse effects , Cisplatin , CD8-Positive T-Lymphocytes/metabolism , Hydrogels , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/metabolism , Antineoplastic Agents/adverse effects
6.
Neuron ; 111(10): 1626-1636.e6, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36917979

ABSTRACT

Lasker's award-winning drug propofol is widely used in general anesthesia. The recreational use of propofol is reported to produce a well-rested feeling and euphoric state; yet, the neural mechanisms underlying such pleasant effects remain unelucidated. Here, we report that propofol actively and directly binds to the dopamine transporter (DAT), but not the serotonin transporter (SERT), which contributes to the rapid relief of anhedonia. Then, we predict the binding mode of propofol by molecular docking and mutation of critical binding residues on the DAT. Fiber photometry recording on awake freely moving mice and [18F] FP-CIT-PET scanning further establishes that propofol administration evokes rapid and lasting dopamine accumulation in nucleus accumbens (NAc). The enhanced dopaminergic tone drives biased activation of dopamine-receptor-1-expressing medium spiny neurons (D1-MSNs) in NAc and reverses anhedonia in chronically stressed animals. Collectively, these findings suggest the therapeutic potential of propofol against anhedonia, which warrants future clinical investigations.


Subject(s)
Dopamine , Propofol , Mice , Animals , Dopamine/metabolism , Propofol/pharmacology , Propofol/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Molecular Docking Simulation , Receptors, Dopamine D1/metabolism , Nucleus Accumbens/physiology , Anhedonia , Mice, Inbred C57BL
7.
Arch Med Sci ; 18(5): 1357-1363, 2022.
Article in English | MEDLINE | ID: mdl-36160337

ABSTRACT

Introduction: Hepatic ischemia/reperfusion injury (I/R) is a significant source of morbidity and mortality after liver surgery. The aim of this study was to investigate the effect of hepatic I/R injury on the hippocampus in rats with postoperative cognitive dysfunction (POCD). Material and methods: Adult male Sprague-Dawley rats (n = 160, age: 20-25 months, weight: 300-350 g) received I/R surgery with ischemia for 20 min, 30 min, and 40 min in different groups. Behavior tests of the Morris water maze (MWM) test and the passive avoidance test were applied. Population spike (PS) of pyramidal cells, nuclear factor κB (NF-κB) and protein kinase γ (PKCγ) in the hippocampus were observed. Results: Within 10 days after surgery, in aged rats with varying impaired cognitive function, spike size and spike latency period were reduced, level of PKCγ was decreased and an increased level of NF-κB was observed in the I/R group, especially in the I/R group with ischemia for 40 min. The parameters showed no significant difference in rats in the I/R group compared with the sham group at the 18th day after surgery. Conclusions: Hepatic I/R injury has a negative impact on the postoperative cognitive function in aged rats, leading to hippocampus changes with PS abnormity and level changes of NF-κB, PKCγ. However, this cognitive deficit improved over time.

8.
J Cell Mol Med ; 25(21): 9983-9994, 2021 11.
Article in English | MEDLINE | ID: mdl-34664412

ABSTRACT

Hepatic ischaemia-reperfusion (I/R) injury constitutes a tough difficulty in liver surgery. Dexmedetomidine (Dex) plays a protective role in I/R injury. This study investigated protective mechanism of Dex in hepatic I/R injury. The human hepatocyte line L02 received hypoxia/reoxygenation (H/R) treatment to stimulate cell model of hepatic I/R. The levels of pyroptosis proteins and inflammatory factors were detected. Functional rescue experiments were performed to confirm the effects of miR-494 and JUND on hepatic I/R injury. The levels of JUND, PI3K/p-PI3K, AKT/p-AKT, Nrf2, and NLRP3 activation were detected. The rat model of hepatic I/R injury was established to confirm the effect of Dex in vivo. Dex reduced pyroptosis and inflammation in H/R cells. Dex increased miR-494 expression, and miR-494 targeted JUND. miR-494 inhibition or JUND upregulation reversed the protective effect of Dex. Dex repressed NLRP3 inflammasome by activating the PI3K/AKT/Nrf2 pathway. In vivo experiments confirmed the protective effect of Dex on hepatic I/R injury. Overall, Dex repressed NLRP3 inflammasome and alleviated hepatic I/R injury via the miR-494/JUND/PI3K/AKT/Nrf2 axis.


Subject(s)
Dexmedetomidine/pharmacology , Liver Diseases/etiology , Liver Diseases/metabolism , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Signal Transduction/drug effects , Animals , Biomarkers , Disease Models, Animal , Gene Expression Regulation , Liver Diseases/drug therapy , Liver Diseases/pathology , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology
9.
Medicine (Baltimore) ; 100(32): e26962, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34397949

ABSTRACT

BACKGROUND: Adjuvants to local anesthetics, such as nalbuphine and dexmedetomidine, can be used to improve the quality and duration of peripheral nerve block effects. Dexmedetomidine has been successfully used as an adjuvant of erector spinae plane block (ESPB) with ropivacaine in video-assisted thoracoscopic lobectomy surgeries (VATLS). This study aimed to compare the effects of nalbuphine and dexmedetomidine used as adjuvants to ropivacaine for ESPB in VATLS. METHODS: A total of 102 patients undergoing VATLS with ESPB were enrolled and randomized into 3 groups, each of which received a different adjuvant to ropivacaine. The visual analogue scale score, onset and duration of sensory block, use of patient-controlled analgesia (PCA), rate of rescue analgesia, duration of postoperative hospitalization, incidence of postoperative nausea and vomiting, and chronic pain were measured and observed. RESULTS: The visual analogue scale score, total PCA use, rate of rescue analgesia, and postoperative chronic pain in the ropivacaine with dexmedetomidine (RD), and ropivacaine with nalbuphine (RN) groups were lower than those in the ropivacaine (RC) group (P < .05). The duration of sensory block was longer and the first use of PCA occurred later in the RD and RN groups than they did in the RC group (P < .05). CONCLUSIONS: As an adjuvant to ropivacaine in ESPB, nalbuphine and dexmedetomidine are comparable in terms of the associated analgesia, sensory block duration, need for rescue analgesia, and incidence of chronic pain in patients after VATLS.


Subject(s)
Dexmedetomidine/pharmacology , Nalbuphine/pharmacology , Pain, Postoperative/therapy , Pneumonectomy/methods , Ropivacaine/pharmacology , Thoracic Surgery, Video-Assisted/methods , Ultrasonography, Interventional/methods , Analgesics, Non-Narcotic/pharmacology , Analgesics, Opioid/pharmacology , Anesthetics, Local/pharmacology , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Nerve Block/methods , Pain, Postoperative/diagnosis , Pain, Postoperative/etiology , Paraspinal Muscles/innervation , Peripheral Nerves , Treatment Outcome
10.
Anesthesiology ; 133(2): 377-392, 2020 08.
Article in English | MEDLINE | ID: mdl-32412932

ABSTRACT

BACKGROUND: Dexmedetomidine induces a sedative response that is associated with rapid arousal. To elucidate the underlying mechanisms, the authors hypothesized that dexmedetomidine increases the activity of dopaminergic neurons in the ventral tegmental area, and that this action contributes to the unique sedative properties of dexmedetomidine. METHODS: Only male mice were used. The activity of ventral tegmental area dopamine neurons was measured by a genetically encoded Ca indicator and patch-clamp recording. Dopamine neurotransmitter dynamics in the medial prefrontal cortex and nucleus accumbens were measured by a genetically encoded dopamine sensor. Ventral tegmental area dopamine neurons were inhibited or activated by a chemogenetic approach, and the depth of sedation was estimated by electroencephalography. RESULTS: Ca signals in dopamine neurons in the ventral tegmental area increased after intraperitoneal injection of dexmedetomidine (40 µg/kg; dexmedetomidine, 16.917 [14.882; 21.748], median [25%; 75%], vs. saline, -0.745 [-1.547; 0.359], normalized data, P = 0.001; n = 6 mice). Dopamine transmission increased in the medial prefrontal cortex after intraperitoneal injection of dexmedetomidine (40 µg/kg; dexmedetomidine, 10.812 [9.713; 15.104], median [25%; 75%], vs. saline, -0.498 [-0.664; -0.355], normalized data, P = 0.001; n = 6 mice) and in the nucleus accumbens (dexmedetomidine, 8.543 [7.135; 11.828], median [25%; 75%], vs. saline, -0.329 [-1.220; -0.047], normalized data, P = 0.001; n = 6 mice). Chemogenetic inhibition or activation of ventral tegmental area dopamine neurons increased or decreased slow waves, respectively, after intraperitoneal injection of dexmedetomidine (40 µg/kg; delta wave: two-way repeated measures ANOVA, F[2, 33] = 8.016, P = 0.002; n = 12 mice; theta wave: two-way repeated measures ANOVA, F[2, 33] = 22.800, P < 0.0001; n = 12 mice). CONCLUSIONS: Dexmedetomidine activates dopamine neurons in the ventral tegmental area and increases dopamine concentrations in the related forebrain projection areas. This mechanism may explain rapid arousability upon dexmedetomidine sedation.


Subject(s)
Dexmedetomidine/pharmacology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Hypnotics and Sedatives/pharmacology , Ventral Tegmental Area/metabolism , Animals , Dopaminergic Neurons/chemistry , Dopaminergic Neurons/drug effects , Electroencephalography/drug effects , Electroencephalography/methods , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Photometry/methods , Ventral Tegmental Area/chemistry , Ventral Tegmental Area/drug effects
11.
Int Immunopharmacol ; 82: 106374, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32163856

ABSTRACT

Rheumatoid arthritis (RA) is a chronic, autoimmune disease characterized by inflammatory synovitis, but its pathogenesis remains unclear. NLRC5 is a newly discovered member of the NLR family that is effective in regulating autoimmunity, inflammatory responses, and cell death processes. Dexmedetomidine (DEX) has been reported to have a variety of pharmacological effects, including anti-inflammatory and analgesic effects. However, the role of DEX in RA has not been explored. In adjuvant-induced arthritis (AA) rat models, DEX (10 µg/kg and 20 µg/kg) reduced the pathological score, the arthritis score, paw swelling volume, and the serum levels of IL-1ß, IL-6, IL-17A, and TNF-α. Moreover, by using Western blot and real-time quantitative PCR (RT-qPCR), it was demonstrated that DEX can inhibit the expression of IL-1ß, IL-6, MMP-3, MMP-9 and P-P65 in the synovial tissue of AA rats. In human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), DEX (250 nM and 500 nM) was found to inhibit the expression of IL-1ß, IL-6, MMP-3, MMP-9, and P-P65 following stimulation with TNF-α. Moreover, DEX can inhibit the invasion and migration of RA-FLSs stimulated by TNF-α. Finally, the expression of NLRC5 in RA-FLSs and AA rat models was also reduced by DEX. After silencing NLRC5 in RA-FLSs, the expression of IL-1ß, IL-6, MMP-3, MMP-9, and P-P65, as well as the invasion and migration of cells, were significantly reduced. These results indicate that DEX inhibits the invasion, migration, and inflammation of RA-FLSs by reducing the expression of NLRC5 and inhibiting the NF-κB activation.

SELECTION OF CITATIONS
SEARCH DETAIL