Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 138
1.
Sci Total Environ ; 937: 173462, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38797399

Triphenyl phosphate (TPhP) and transition metal elements have been ubiquitously detected in the atmosphere, which can participate in atmospheric chemical reactions and induce damage to human health. Currently the understanding of TPhP degradation, transformation and cytotoxicity on atmospheric particles surface are still limited. Therefore, this study used laboratory simulation methods to investigate the influence of irradiation time, transition metal salts, relative humidity (RH) to TPhP degradation, transformation and relative cytotoxicity. TPhP was coated on particle surfaces of four transition metal salts (MnSO4, CuSO4, FeSO4 and Fe2(SO4)3) in the experiment. Within 12 h irradiation, the significant TPhP photodegradation can be observed on all particles surface. Among these influence factors, the irradiation and RH were the crucial aspects to TPhP degradation, which primarily affect the OH concentration in the atmosphere. The transition metal elements only exhibited slightly catalytic effect to TPhP degradation. The mechanism study indicated that the major degradation products of TPhP are diphenyl hydrogen phosphate (DPhP) and OH-DPhP, which originated from the phenoxy bond cleavage and hydroxylation of TPhP induced by OH. As for the cytotoxicity to A549 cells, all the transition metal particles coated with TPhP can cause cellular injury, which was chiefly induced by the transition metal salt. The possible cytotoxicity mechanism of these particles to A549 cells can be attributed to the excessive reactive oxygen species (ROS) production. This study may provide a further understanding of TPhP degradation and related cytotoxicity with the coexistent transition metal salts in the atmosphere.


Air Pollutants , Atmosphere , Organophosphates , Transition Elements , Air Pollutants/toxicity , Air Pollutants/chemistry , Transition Elements/chemistry , Humans , Organophosphates/toxicity , Organophosphates/chemistry , Atmosphere/chemistry , A549 Cells , Salts/chemistry
2.
Sci Total Environ ; 927: 172313, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38593871

The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO43--P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.63 % in the total P uptake amount. After excluding bio-mineralization and surface re-aeration, indoor light conditions (180 to 260 lx) inducing non-aerated P uptake were confirmed. High-throughput sequencing analysis revealed that cyanobacteria could produce oxygen via photosynthesis and were inhabited inside wall biofilm. The cyanobacteria (Pantalinema and Leptolyngbya ANT.L52.2) were incubated in a feeding transparent silicone hose, entered the reactor along with influent, and outcompeted Chlorophyta, which existed in the inoculum. Eventually, this work deciphered the reason for non-aerated phosphorus uptake and indicated its potential application in reducing CO2 emissions and energy consumption via the cooperation of microalgal-bacterial and biofilm-sludge.


Bioreactors , Cyanobacteria , Phosphorus , Waste Disposal, Fluid , Phosphorus/metabolism , Cyanobacteria/metabolism , Cyanobacteria/physiology , Bioreactors/microbiology , Anaerobiosis , Waste Disposal, Fluid/methods , Biofilms , Aerobiosis
3.
J Am Chem Soc ; 146(18): 12519-12529, 2024 May 08.
Article En | MEDLINE | ID: mdl-38666300

Na3V2(PO4)2F3 is recognized as a promising cathode for high energy density sodium-ion batteries due to its high average potential of ∼3.95 V (vs Na/Na+). A high-voltage-resistant electrolyte is of high importance due to the long duration of 4.2 V (vs Na/Na+) when improving cyclability. Herein, a targeted electrolyte containing additives with two -C≡N groups like succinonitrile has been designed. In this design, one -C≡N group is accessible to the solvation sheath and enables the other -C≡N in dinitrile being exposed and subsequently squeezed into the electric double layer. Then, the squeezed -C≡N group is prone to a preferential adsorption on the electrode surface prior to the exposed -CH2/-CH3 in Na+-solvent and oxidized to construct a stable and electrically insulating interface enriched CN-/NCO-/Na3N. The Na3V2(PO4)2F3-based sodium-ion batteries within a high-voltage of 2-4.3 V (vs Na/Na+) can accordingly achieve an excellent cycling stability (e.g., 95.07% reversible capacity at 1 C for 1,5-dicyanopentane and 98.4% at 2 C and 93.0% reversible capacity at 5 C for succinonitrile after 1000 cycles). This work proposes a new way to design high-voltage electrolytes for high energy density sodium-ion batteries.

4.
Bioresour Technol ; 393: 130159, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070580

The response of anammox bacteria to hydroxylamine has not been well explained. Herein, hydroxylamine was long-term added as the sole substrate to marine anammox bacteria (MAB) in saline wastewater treatment for the first time. MAB could tolerate 5 mg/L hydroxylamine. However, MAB activity was inhibited by the high dose of hydroxylamine (40 mg/L), and hydroxylamine removal efficiency was only 3 %. Remarkably, when hydroxylamine reached 20 mg/L, ammonium was produced the most at 2.88 mg/L, mainly by the hydroxylamine and hydrazine disproportionations. Besides, the relative abundance of Candidatus Scalindua decreased from 4.6 % to 0.6 % as the hydroxylamine increased from 0 to 40 mg/L. MAB secreted more extracellular polymeric substances to resist hydroxylamine stress. However, long-term hydroxylamine loading led to the disintegration of MAB granules. This work shed light on the response of MAB to hydroxylamine in saline wastewater treatment.


Ammonium Compounds , Microbiota , Hydroxylamine , Wastewater , Nitrogen/analysis , Denitrification , Anaerobic Ammonia Oxidation , Bacteria , Hydroxylamines
5.
Chemosphere ; 349: 140948, 2024 Feb.
Article En | MEDLINE | ID: mdl-38103655

Perfluorooctane sulfonic acid (PFOS) is a perfluoroalkyl and polyfluoroalkyl substance (PFAS) widely used in daily life. As its toxicity was confirmed, it has been gradually substituted by F-53B (chlorinated polyfluoroalkyl sulfonates, Cl-PFESAs) in China. PFOS exposure during prenatal development may hinder the development of preimplantation embryos, as indicated by recent epidemiological research and in vivo assays. However, the embryotoxicity data for F-53B are scarce. Furthermore, knowledge about the toxicity of F-53B and PFOS exposure to internal follicular fluid concentrations on early preimplantation embryo development remains limited. In this study, internal exposure concentrations of PFOS (10 nM) and F-53B (2 nM) in human follicular fluid were chosen to study the effects of PFAS on early mouse preimplantation embryo development. We found that both PFOS and F-53B treated zygotes exhibited higher ROS activity in 8-cell embryos but not in 2-cell stage embryos. PFOS and F-53B significantly affected the proportion and aggregation of the inner cell mass (ICM) in the blastocyst, but not the total cell number. Mouse embryonic stem cells (mESCs, isolated from the ICM) and embryoid body (EB) assays were employed to assess the toxicity of PFOS and F-53B on the development and differentiation of embryonic pluripotent cells. These results suggested that mESCs exhibited more DNA damage and abnormal germ layer differentiation after brief exposure to PFOS or F-53B. Finally, RNA-sequencing revealed that PFOS and F-53B exposure affected mESCs biosynthetic processes and chromatin-nucleosome assembly. Our results indicate that F-53B has potential risks as an alternative to PFOS, which disrupts ICM development and differentiation.


Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Female , Animals , Humans , Mice , Zebrafish , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Blastocyst/chemistry
6.
Environ Sci Technol ; 57(38): 14330-14339, 2023 09 26.
Article En | MEDLINE | ID: mdl-37710968

The ubiquitous occurrence of per- and polyfluoroalkyl substances (PFAS) and the detection of unexplained extractable organofluorine (EOF) in drinking water have raised growing concerns. A recent study reported the detection of inorganic fluorinated anions in German river systems, and therefore, in some samples, EOF may include some inorganic fluorinated anions. Thus, it might be more appropriate to use the term "extractable fluorine (EF) analysis" instead of the term EOF analysis. In this study, tap water samples (n = 39) from Shanghai were collected to assess the levels of EF/EOF, 35 target PFAS, two inorganic fluorinated anions (tetrafluoroborate (BF4-) and hexafluorophosphate (PF6-)), and novel PFAS through suspect screening and potential oxidizable precursors through oxidative conversion. The results showed that ultra-short PFAS were the largest contributors to target PFAS, accounting for up to 97% of ΣPFAS. To the best of our knowledge, this was the first time that bis(trifluoromethanesulfonyl)imide (NTf2) was reported in drinking water from China, and p-perfluorous nonenoxybenzenesulfonate (OBS) was also identified through suspect screening. Small amounts of precursors that can be oxidatively converted to PFCAs were noted after oxidative conversion. EF mass balance analysis revealed that target PFAS could only explain less than 36% of EF. However, the amounts of unexplained extractable fluorine were greatly reduced when BF4- and PF6- were included. These compounds further explained more than 44% of the EF, indicating the role of inorganic fluorinated anions in the mass balance analysis.


Drinking Water , Fluorocarbons , Fluorine , China , Imides
7.
J Colloid Interface Sci ; 650(Pt B): 1966-1973, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37527601

Adjusting the electronic structure and intrinsic activity of the active site of the catalyst based on atomic implantation is the crucial to realizing efficient electrochemical water splitting in alkaline media. Thus, we introduce vanadium (V) atoms with abundant vacant d orbitals as dopants into nickel selenides (NiSe), which has abundant variable valence states, and successfully synthesise three-dimensional bi-functional catalysts self-supported on Ni foam (NF). The electron structure characterisation reveals that, compared with the pure NiSe phase, the oxidation states of Ni cations and electron concentration at the Se site in V-NiSe increase due to the V doping. These changes are accompanied by changes in the electronic structure and active sites in V-NiSe. The as-generated V-NiSe nanorods exhibit an optimised electronic structure, high number of active sites and highly rough nanorod array structure with large electrochemically active surface area and in situ growth characteristics of conductive NF. Thus, the as-generated V-NiSe nanorods catalysts exhibit excellent bi-functional catalytic activity, with 50 mA⋅cm-2 at an overpotential of 270.2 and 251.2 mV for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER), respectively, in KOH (1 M). Water electrolysis using V-NiSe as both the anode and cathode requires a cell voltage of 1.76 V to drive 50 mA⋅cm-2, continuously operating for 80 h. This study provides a systematic understanding of the design of transition-metal catalysts using heteroatomic doping to control their electronic structure and catalytic activity.

8.
Environ Sci Pollut Res Int ; 30(44): 99735-99747, 2023 Sep.
Article En | MEDLINE | ID: mdl-37620695

Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.


Air Pollution, Indoor , Flame Retardants , Humans , Dust/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Air Pollution, Indoor/analysis , Gastrointestinal Tract/metabolism , Environmental Monitoring
9.
J Colloid Interface Sci ; 650(Pt A): 573-581, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37429164

Designing heterojunction catalysts with energy effects at the interface, particularly combining the surface structure advantages of super-hydrophilic interfaces with the high activity advantages of bimetal synergistic optimisation, is the key to developing economical and efficient industrial electrocatalytic water-splitting catalysts. In this study, a coupled nanoflower-like NiFe(OH)x/(Ni, Fe)Se heterostructure catalyst supported on Ni foam (NF) (NFSe@NFOH/NF) was designed and successfully prepared using hydrothermal and electrodeposition strategies. Owing to the electron interaction at the heterogeneous amorphous (NFOH)/crystalline (NFSe) interface and the bimetallic synergistic effect of Ni and Fe, the prepared NFSe@NFOH/NF exhibited excellent and stable oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalytic properties, with low overpotentials of 214/276 mV at 100 mA⋅cm-2 and 262/340 mV at 500 mA⋅cm-2. The assembled water electrolyser comprising NFSe@NFOH/NF || NFSe@NFOH/NF needed only small voltages of 1.73 and 1.85 V to yield current densities of 100 and 500 mA⋅cm-2, respectively. This study offers an innovative design idea for the rational adoption of interface engineering and amorphous-crystalline engineering techniques to construct catalysts with excellent catalytic activity and stability for electrocatalytic overall water splitting (EOWS) at a high current density, which further facilitates the advancement of sustainable energy technology in the future.

10.
Environ Sci Pollut Res Int ; 30(41): 93744-93759, 2023 Sep.
Article En | MEDLINE | ID: mdl-37516701

Black-crowned night heron (Nycticorax nycticorax) eggs have been identified as useful indicators for biomonitoring the environmental pollution in China. In this study, we investigated thirty eggs of black-crowned night heron collected from the upper Yangtze River (Changjiang) Basin, Southwest China, for the occurrence of legacy persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Our results showed a general presence of POPs in night heron eggs with OCPs being the dominant contaminants, having a geometric mean concentration of 22.2 ng g-1 wet weight (ww), followed by PCBs (1.36 ng g-1 ww), PBDEs (0.215 ng g-1 ww), and PCDD/Fs (23.0 pg g-1 ww). The concentration levels were found to be significantly higher in night heron eggs than in poultry eggs by one or two magnitude orders. Among OCP congeners, p,p'-DDE was found to be predominant in night heron eggs, with a geometric mean concentration of 15.1 ng g-1 ww. Furthermore, species-specific congener patterns in eggs suggested similar or different sources for different POPs, possibly associated with contaminated soil and parental dietary sources. Additionally, estimated daily intakes (EDIs) were used to evaluate non-carcinogenic and carcinogenic risk associated with consumption of bird eggs. Our results revealed non-negligible non-cancer and cancer risk for humans who consume wild bird eggs as a regular diet instead of poultry eggs.


Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Animals , Humans , Polychlorinated Biphenyls/analysis , Poultry , Polychlorinated Dibenzodioxins/analysis , Persistent Organic Pollutants , Dibenzofurans , Halogenated Diphenyl Ethers/analysis , Birds , Environmental Pollutants/analysis , Hydrocarbons, Chlorinated/analysis , China , Pesticides/analysis , Dibenzofurans, Polychlorinated
11.
Sci Total Environ ; 896: 165194, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37391149

Although many studies have examined polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in biota, information on the bioaccumulation characteristics of NBFRs from field works is limited. This study investigated the tissue-specific exposure to PBDEs and NBFRs in two reptilian (short-tailed mamushi and red-backed rat snake) and one amphibian species (black-spotted frog) prevalent in the Yangtze River Delta, China. The levels of ΣPBDEs and ΣNBFRs ranged from 4.4-250 and 2.9-22 ng/g lipid weight for snakes respectively and 2.9-120 and 7.1-97 ng/g lipid weight for frogs respectively. BDE-209, BDE-154, and BDE-47 were three major PBDE congeners while decabromodiphenylethane (DBDPE) dominated in NBFRs. Tissue burdens indicated that snake adipose was the major storage site of PBDEs and NBFRs. The biomagnification factors (BMFs) estimated from black-spotted frog to red-backed rat snake indicated the biomagnification of penta- to nona-BDE congeners (BMFs 1.1-4.0) but the lack of biomagnification of other BDE and all NBFR congeners (BMFs 0.16-0.78). Mother to egg transfer of PBDEs and NBFRs evaluated in frogs showed that maternal transfer efficiency was positively related to chemical lipophilicity. This is the first field study on the tissue distribution of NBFRs in reptiles and amphibians and the maternal transfer behavior of 5 major NBFRs. The results underline the bioaccumulation potential of alternative NBFRs.


Colubridae , Flame Retardants , Animals , Halogenated Diphenyl Ethers/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Bioaccumulation , Tissue Distribution , China , Anura , Lipids
12.
J Hazard Mater ; 456: 131677, 2023 08 15.
Article En | MEDLINE | ID: mdl-37245363

Photo-Fenton technology integrated by photocatalysis and Fenton reaction is a favorable strategy for water remediation. Nevertheless, the development of visible-light-assisted efficient and recyclable photo-Fenton catalysts still faces challenges. This study successfully constructed a novel separable Z-scheme P-g-C3N4/Fe3O4QDs/BiOI (PCN/FOQDs/BOI) heterojunction via in-situ deposition method. The results showed that the photo-Fenton degradation efficiency for tetracycline over optimal ternary catalyst reached 96.5% within 40 min at visible illumination, which was 7.1 and 9.6 times higher than its single photocatalysis and Fenton system, respectively. Moreover, PCN/FOQDs/BOI possessed excellent photo-Fenton antibacterial activity, which could completely inactivate 108 CFU·mL-1 of E. coli and S. aureus within 20 and 40 min, respectively. Theoretical calculation and in-situ characterization revealed that the enhanced catalysis behavior resulted from the FOQDs mediated Z-scheme electronic system, which not only facilitated photocreated carrier separation of PCN and BOI while maintaining maximum redox capacity, but also accelerated H2O2 activation and Fe3+/Fe2+ cycle, thus synergistically forming more active species in system. Additionally, PCN/FOQDs/BOI/Vis/H2O2 system displayed extensive adaptability at pH range of 3-11, removal universality for various organic pollutants and attractive magnetic separation property. This work would provide an inspiration for design of efficient and multifunctional Z-scheme photo-Fenton catalyst in water purification.


Escherichia coli , Quantum Dots , Hydrogen Peroxide , Staphylococcus aureus , Tetracycline , Anti-Bacterial Agents/pharmacology , Catalysis
13.
Bioresour Technol ; 377: 128913, 2023 Jun.
Article En | MEDLINE | ID: mdl-36934904

The process performance of partial denitrification of a novel anaerobic fermentation integrated fixed-film activated sludge (IFAS-AFPD) of Enteromorpha was studied. The response surface method was used to determine the optimal reaction conditions, and the operation experiment was carried out under the optimal conditions. The results showed that the nitrogen removal effect was the best when the salinity was 12.2 g•L-1, the Carbon-Nitrogen ratio (C/N) was 4, the pH was 8.5, and the Nitrite Accumulation Rate, Nitrate Removal Rate, Chemical Oxygen Demand Utilization Rate could reach 77%, 89% and 51%. Experimental results have shown that the NAR of the Enteromorpha ferment liquid system could be maintained at about 74%, which was noteworthy higher than that of the sodium acetate (CH3COONa) system at 42%; Microbial community analysis showed that Enteromorpha ferment liquid was more beneficial to the growth of Bacteroidetes than CH3COONa.


Denitrification , Water Purification , Bioreactors , Nitrogen , Carbon , Sewage , Aquaculture
14.
Bioresour Technol ; 372: 128658, 2023 Mar.
Article En | MEDLINE | ID: mdl-36690218

The combined denitrifying phosphorus removal (DPR) and Anammox process is expected to achieve advanced nutrient removal with low carbon consumption. However, exchanging ammonia/nitrate between them is one limitation. This study investigated the feasibility of conducting DPR in a biofilm reactor to solve that problem. After 46-day anaerobic/aerobic operation, high phosphorus removal efficiency (PRE, 83.15 %) was obtained in the activated sludge (AS) and biofilm co-existed system, in which the AS performed better. Phosphate-accumulating organisms might quickly adapt to the anoxic introduced nitrate, but the following aerobic stage ensured a low effluent orthophosphate (<1.03 mg/L). Because of waste sludge discharging and AS transforming to biofilm, the suspended solids dropped below 60 mg/L on Day 100, resulting in PRE decline (17.17 %) and effluent orthophosphate rise (4.23 mg/L). Metagenomes analysis revealed that Pseudomonas and Thiothrix had genes for denitrification and encoding Pit phosphate transporter, and Candidatus_Competibacter was necessary for biofilm formation.


Phosphorus , Sewage , Denitrification , Nitrates , Carbon , Bioreactors , Nitrogen , Phosphates , Organic Chemicals , Nutrients , Biofilms , Waste Disposal, Fluid/methods
15.
J Colloid Interface Sci ; 632(Pt A): 108-116, 2023 Feb 15.
Article En | MEDLINE | ID: mdl-36410292

Designing heterojunction catalysts with high-energy interfacial effects, especially combining the geometrical advantages of hierarchical micro-nano structures with the advantages of bi- or multi-metal syergistically optimised electronic coordination environments, is crucial for achieving efficient and stable water splitting. In this study, a simple one-step hydrothermal method was used to construct a hierarchical wing-like iron/molybdenum oxide heterojunction with a porous structure on nickel foam (FMO/NF). The synergistic effect of Fe, Mo, and the heterostructures can enrich structural defects, overcome the disadvantages of the individual components, and improve material performance by optimising the structural configurations and electronic properties and exploiting the electronic interactions that occur between interfaces composed of different phases. In addition, owing to the high porosity of the hierarchical micro-nano structure and abundant active sites, the wing-like FMO/NF was utilised as an efficient bifunctional catalyst for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), presenting low overpotentials of 278.06 and 263.72 mV, respectively, at a current density of 100 mA·cm-2 in 1 mol/L KOH. Furthermore, assembling FMO/NF as both the anode and cathode (FMO/NF || FMO/NF) required a cell voltage of 1.87 V to drive 100 mA·cm-2 in 1 mol/L KOH, and it proceeded continuously for 110 h with negligible cell voltage decay. This work provides a rational synthetic route for the preparation of innovative double transition metal-based micro-nano hierarchical heterostructured electrocatalysts with a synergistic effect and further advances the development of energy-conversion technology.

16.
Reprod Biol Endocrinol ; 20(1): 173, 2022 Dec 20.
Article En | MEDLINE | ID: mdl-36539842

BACKGROUND: High-temperature requirement protease A2 (HtrA2/Omi) is a mitochondrial chaperone that is highly conserved from bacteria to humans. It plays an important role in mitochondrial homeostasis and apoptosis. In this study, we investigated the role of HtrA2 in mouse oocyte maturation. METHODS: The role of HtrA2 in mouse oocyte maturation was investigated by employing knockdown (KD) or overexpression (OE) of HtrA2 in young or old germinal vesicle (GV) oocytes. We employed immunoblotting, immunostaining, fluorescent intensity quantification to test the HtrA2 knockdown on the GV oocyte maturation progression, spindle assembly checkpoint, mitochondrial distribution, spindle organization, chromosome alignment, actin polymerization, DNA damage and chromosome numbers and acetylated tubulin levels. RESULTS: We observed a significant reduction in HtrA2 protein levels in aging germinal vesicle (GV) oocytes. Young oocytes with low levels of HtrA2 due to siRNA knockdown were unable to complete meiosis and were partially blocked at metaphase I (MI). They also displayed significantly more BubR1 on kinetochores, indicating that the spindle assembly checkpoint was triggered at MI. Extrusion of the first polar body (Pb1) was significantly less frequent and oocytes with large polar bodies were observed when HtrA2 was depleted. In addition, HtrA2 knockdown induced meiotic spindle/chromosome disorganization, leading to aneuploidy at metaphase II (MII), possibly due to the elevated level of acetylated tubulin. Importantly, overexpression of HtrA2 partially rescued spindle/chromosome disorganization and reduced the rate of aneuploidy in aging GV oocytes. CONCLUSIONS: Collectively, our data suggest that HtrA2 is a key regulator of oocyte maturation, and its deficiency with age appears to contribute to reproduction failure in females.


Oocytes , Tubulin , Female , Mice , Humans , Animals , Tubulin/genetics , Tubulin/metabolism , Oocytes/metabolism , Meiosis/genetics , Metaphase , Aging/genetics
17.
Chemosphere ; 309(Pt 1): 136728, 2022 Dec.
Article En | MEDLINE | ID: mdl-36209870

The effects of salinity on highly enriched polyphosphate- or glycogen-accumulating organisms (PAOs or GAOs) have been revealed, which is meaningful but idealized. In this study, three salinity levels (0.5%, 1.0%, and 0.75%) were sequentially adopted in a PAOs and GAOs coexisted biological phosphorus removal (BPR) reactor within 150 days. Compared to a slight decrease of phosphorus removal efficiency (PRE) under 0.5% salinity (from 96.09% to 73.68%), doubled salinity (1.0%) resulted in a lengthy recovery period and a sharp PRE decline (13.89%), and the PRE was merely kept at 27.39% even through salinity was decreased to 0.75% hereafter. Salinity was also found to stimulate more extracellular protein secretion, resulting in sludge volume index reduction (<32.87 mL/g) and particle size enlargement (222.78 µm on average). Hyphomicrobium (0.96%-1.76%) and unclassified_f_Rhodobacteraceae (4.72%-13.33%) could resist certain salinity and conduct BPR, but better salt-tolerant Candidatus_Competibacter eventually became the predominant genus (>40%).


Microbiota , Phosphorus , Phosphorus/metabolism , Sewage , Bioreactors , Salinity , Polyphosphates/metabolism , Glycogen/metabolism
18.
Environ Int ; 167: 107404, 2022 09.
Article En | MEDLINE | ID: mdl-35868077

Paddy plants provide staple food for 3 billion people worldwide. This study explores the environmental fate and behavior of a high-volume production emerging contaminants chlorinated paraffins (CPs) in the paddy ecosystem. Very-short-, short-, medium-, and long-chain CPs (vSCCPs, SCCPs, MCCPs, and LCCPs, respectively) were analyzed in specific tissue of paddy plants at four main growth stages and soils from the Yangtze River Delta, China throughout a full rice growing season. The total CP concentrations in the paddy roots, stalks, leaves, panicles, hulls, rice, and soils ranged from 181 to 1.74 × 103, 21.7-383, 19.6-585, 108-332, 245-470, 59.6-130, and 99.6-400 ng/g dry weight, respectively. The distribution profile indicated the translocation of SCCPs and MCCPs from soils to paddy tissue, highlighting their elevated bioaccumulative potential. The evolution of CP level/mass/pattern during the whole growth cycle suggested atmospheric CPs deposition on leaves and hulls, as well as stalk-rice transfer. CSOIL plant uptake model well predicted the level, distribution pattern, and bioconcentration factors (BCFs) of SCCPs and MCCPs in paddy shoot and recognized the soil-air-shoot pathway as the major contributor. Moreover, risk evaluation indicated that MCCPs intake and subsequent risks dominated the total exposure to CPs via rice ingestion. This is the first report on the occurrence, fate and risk assessment of all CPs classes in paddy ecosystems, and the results underline the potential health effects caused by the in-use MCCPs via rice ingestion.


Hydrocarbons, Chlorinated , Oryza , China , Ecosystem , Environmental Monitoring/methods , Humans , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Risk Assessment , Soil
19.
J Colloid Interface Sci ; 627: 10-20, 2022 Dec.
Article En | MEDLINE | ID: mdl-35839556

Transition metal selenides (TMSe) are considered as potential anode materials for supercapacitors because of their abundant reserves and high safety.However, their poor conductivity limits their high rate performance and stability.In this paper, an N-doped porous nanocarbon-coated Co3Se4 quantum dots (NCCS-QDs) composite is prepared as the cathode material of supercapacitor. The formation of Co3Se4 quantum dots complies with a size minimization strategy to speed up ion transport. At the same time, the Co0.85Se nanosheets are converted into Co3Se4 quantum dots, avoiding the collapse of the nanosheets during the electrochemical process. In addition, the porous nanocarbon coating increases the number of active sites and the contact area between the electrode and the electrolyte, which can provide more ion transport channels and pore sizes, while avoiding the generation of inactive clusters in the electrochemical reaction of quantum dots. The as-assembled NCCS-QDs-2//AC ASCs devices demonstrate excellent electrochemical performance with an energy density of 84.59 Wh kg-1 at a power density of 799.99 W kg-1.At the same time, the ASCs device showed excellent cycle stability, with 95.6% of the initial capacitance still maintained after 15,000 charge and discharge cycles.The excellent electrochemical performance of NCCS-QDs-2//AC ASC device proves that NCCS-QDs composite material has a broad application prospect in the cathode material of supercapacitor.

20.
ACS Appl Mater Interfaces ; 14(30): 34770-34780, 2022 Aug 03.
Article En | MEDLINE | ID: mdl-35867520

Reasonable design of materials with complex nanostructures and diverse chemical compositions is of great significance in the field of energy storage. Cu7KS4 (CKS) is considered a potential electrode material for supercapacitors due to its superior electrical conductivity. Transition metal hydroxides are widely used as electrode materials for supercapacitors due to their high theoretical specific capacitance (Cs); however, single metal species with limited active sites restrict their further applications for energy storage. Herein, through a hydrothermal reaction, CKS nanorods were prepared, and then binary metal hydroxide NixCo1-x(OH)2 nanosheets were generated directly on CKS nanorods through a one-step hydrothermal reaction to form a nano-core-shell structure (NCSS). By regulating the mole ratio of nickel nitrate to cobalt nitrate, the resulting Ni0.75Co0.25(OH)2 nanosheets with the best electrochemical activity were prepared and supported on CKS nanorods to form a CKS@N0.75C0.25OH NCSS. The as-prepared CKS@N0.75C0.25OH NCSS has a larger specific surface area, which can provide more active sites, while the abundant metal species composition can generate abundant redox reactions to boost the pseudocapacitance. The prepared CKS@N0.75C0.25OH/NF electrode exhibits outstanding specific capacitance and cycle life. The assembled CKS@N0.75C0.25OH/NF//AC all-solid-state asymmetric supercapacitor achieves a high energy density of 88.7 Wh kg-1 at a power density of 849.9 W kg-1 with superior cycle life. Therefore, the use of polymetallic hydroxides to construct NCSS electrodes has great research significance and broad application prospects.

...