Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Virol ; 98(5): e0159623, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38587378

ABSTRACT

Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.


Subject(s)
Chemokine CXCL11 , Herpes Genitalis , Herpesvirus 2, Human , Ribonucleotide Reductases , Animals , Female , Guinea Pigs , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL11/immunology , Chemokine CXCL11/metabolism , Disease Models, Animal , Ganglia, Spinal/immunology , Ganglia, Spinal/virology , Herpes Genitalis/immunology , Herpes Genitalis/prevention & control , Herpesvirus 2, Human/immunology , Memory T Cells/immunology , Ribonucleotide Reductases/metabolism , Vaccination , Vagina/virology , Vagina/immunology
2.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405942

ABSTRACT

The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.

3.
Front Immunol ; 15: 1328905, 2024.
Article in English | MEDLINE | ID: mdl-38318166

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). Conclusion: A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Cross Protection , Animals , Humans , Mice , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Epitopes, T-Lymphocyte/genetics , Pandemics , SARS-CoV-2/genetics
4.
J Immunol ; 212(4): 576-585, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38180084

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.


Subject(s)
COVID-19 , Melphalan , SARS-CoV-2 , gamma-Globulins , Cricetinae , Humans , Mice , Animals , Mesocricetus , Receptor for Advanced Glycation End Products/genetics , Post-Acute COVID-19 Syndrome , Mice, Transgenic , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Lung
5.
J Virol ; 97(12): e0109623, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38038432

ABSTRACT

IMPORTANCE: Although the current rate of SARS-CoV-2 infections has decreased significantly, COVID-19 still ranks very high as a cause of death worldwide. As of October 2023, the weekly mortality rate is still at 600 deaths in the United States alone, which surpasses even the worst mortality rates recorded for influenza. Thus, the long-term outlook of COVID-19 is still a serious concern outlining the need for the next-generation vaccine. This study found that a prime/pull coronavirus vaccine strategy increased the frequency of functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells in the lungs of SARS-CoV-2-infected triple transgenic HLA-DR*0101/HLA-A*0201/hACE2 mouse model, thereby resulting in low viral titer and reduced COVID-19-like symptoms.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL11/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Epitopes , Lung/immunology , Lung/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus , Disease Models, Animal
6.
bioRxiv ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37609157

ABSTRACT

Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes latency in sensory neurons of the dorsal root ganglia (DRG). Intermittent virus reactivation from latency and shedding in the vaginal mucosa (VM) causes recurrent genital herpes. While T-cells appear to play a role in controlling virus reactivation and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T-cells into DRG and VM tissues remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-1 RR2 protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 (AAV-8) expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus shedding in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ TRM and TEM cells in reducing virus reactivation shedding and the severity of recurrent genital herpes and propose the novel prime/pull vaccine strategy to protect against recurrent genital herpes.

7.
J Vector Borne Dis ; 60(2): 200-206, 2023.
Article in English | MEDLINE | ID: mdl-37417170

ABSTRACT

BACKGROUND & OBJECTIVES: The highly sensitive method for a true understanding of malaria prevalence is of utmost importance for India's elimination strategy. The PCR reaction type with rapid detection, cost-effectiveness, and less workforce should be preferable. Multiplex PCR type accomplishes the present requirement by saving time and resources to find true surveillance data for malaria, especially in low-parasitemia/asymptomatic groups or populations. METHODS: The present study focuses on designing multiplex PCR (mPCR) to detect simultaneously Plasmodium genus (PAN) and two common Plasmodium species found in India. It is compared to standard nested PCR on 195 clinical samples to diagnose malaria. The mPCR was designed with a minimum number of primers, leading to less clogging and effective and enhanced detection. It contains one common reverse primer and three forward primers amplifying three targeted genes corresponding to P. falciparum, P. vivax, and Plasmodium genus. RESULTS: The sensitivity and specificity for mPCR were 94.06 and 95.74, respectively. The limit of detection for mPCR was 0.1 parasites/µl. The study has shown a ROC curve area for the mPCR of 0.949 for Plasmodium genus and P. falciparum and 0.897 for P. vivax with standard nPCR. INTERPRETATION & CONCLUSION: The mPCR is rapid in detecting species together, cost-effective, and requires fewer human resources than the standard nPCR. Therefore, the mPCR can be used as an alternative technique for the higher sensitive detection of the malaria parasite. It could also become a vital tool for determining malaria prevalence, facilitating the application of the most effective measures.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Plasmodium , Humans , Multiplex Polymerase Chain Reaction/methods , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Malaria/diagnosis , Malaria/epidemiology , Malaria/parasitology , Malaria, Falciparum/diagnosis , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Plasmodium/genetics , Sensitivity and Specificity
8.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292784

ABSTRACT

Vaginal mucosa-resident anti-viral effector memory B- and T cells appeared to play a crucial role in protection against genital herpes. However, how to mobilize such protective immune cells into the vaginal tissue close to infected epithelial cells remains to be determined. In the present study, we investigate whether and how, CCL28, a major mucosal-associated chemokine, mobilizes effector memory B- and T cells in leading to protecting mucosal surfaces from herpes infection and disease. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). We found the presence of significant frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10 receptor, in herpes-infected asymptomatic (ASYMP) women compared to symptomatic (SYMP) women. A significant amount of the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP B6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected asymptomatic mice. In contrast, compared to wild-type (WT) B6 mice, the CCL28 knockout (CCL28(-/-)) mice: (i) Appeared more susceptible to intravaginal infection and re-infection with HSV-2; (ii) Exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. The results imply a critical role of the CCL28/CCR10 chemokine axis in the mobilization of anti-viral memory B and T cells within the VM to protect against genital herpes infection and disease.

9.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292861

ABSTRACT

Background: The Coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of SARS-CoV-2 infections has decreased significantly; the long-term outlook of COVID-19 remains a serious cause of high death worldwide; with the mortality rate still surpassing even the worst mortality rates recorded for the influenza viruses. The continuous emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, have prolonged the COVID-19 pandemic and outlines the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: In the present study, we designed a multi-epitope-based Coronavirus vaccine that incorporated B, CD4+, and CD8+ T cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-Coronavirus vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The Pan-Coronavirus vaccine: (i) is safe; (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells; and (iii) provides robust protection against virus replication and COVID-19-related lung pathology and death caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2) and Omicron (B.1.1.529). Conclusions: A multi-epitope pan-Coronavirus vaccine bearing conserved human B and T cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that cleared the virus, and reduced COVID-19-related lung pathology and death caused by multiple SARS-CoV-2 VOCs.

10.
J Immunol ; 211(1): 118-129, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37222480

ABSTRACT

Four major mucosal-associated chemokines, CCL25, CCL28, CXCL14, and CXCL17, play an important role in protecting mucosal surfaces from infectious pathogens. However, their role in protection against genital herpes remains to be fully explored. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). In this study, we investigated the role of the CCL28/CCR10 chemokine axis in mobilizing protective antiviral B and T cell subsets into the VM site of herpes infection. We report a significant increase in the frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10, in herpes-infected asymptomatic (ASYMP) women compared with symptomatic women. Similarly, a significant increase in the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP C57BL/6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected ASYMP mice. Inversely, compared with wild-type C57BL/6 mice, the CCL28 knockout (CCL28-/-) mice (1) appeared to be more susceptible to intravaginal infection and reinfection with HSV type 2, and (2) exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. These findings suggest a critical role of the CCL28/CCR10 chemokine axis in the mobilization of antiviral memory B and T cells within the VM to protect against genital herpes infection and disease.


Subject(s)
Herpes Genitalis , Humans , Female , Mice , Animals , Antiviral Agents/metabolism , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes , Herpesvirus 2, Human , Mucous Membrane , Antiviral Restriction Factors , Receptors, CCR10/metabolism , Chemokines, CC/metabolism , Hyaluronan Receptors/metabolism
11.
Korean J Parasitol ; 60(4): 295-299, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36041492

ABSTRACT

Malaria elimination and control require prompt and accurate diagnosis for treatment plan. Since microscopy and rapid diagnostic test (RDT) are not sensitive particularly for diagnosing low parasitemia, highly sensitive diagnostic tools are required for accurate treatment. Molecular diagnosis of malaria is commonly carried out by nested polymerase chain reaction (PCR) targeting 18S rRNA gene, while this technique involves long turnaround time and multiple steps leading to false positive results. To overcome these drawbacks, we compared highly sensitive cytochrome oxidase gene-based single-step multiplex reaction with 18S rRNA nested PCR. Cytochrome oxidase (cox) genes of P. falciparum (cox-III) and P. vivax (cox-I) were compared with 18S rRNA gene nested PCR and microscopy. Cox gene multiplex PCR was found to be highly specific and sensitive, enhancing the detection limit of mixed infections. Cox gene multiplex PCR showed a sensitivity of 100% and a specificity of 97%. This approach can be used as an alternative diagnostic method as it offers higher diagnostic performance and is amenable to high throughput scaling up for a larger sample size at low cost.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , DNA, Protozoan/analysis , DNA, Protozoan/genetics , Electron Transport Complex IV/genetics , Humans , Malaria/diagnosis , Malaria, Falciparum/diagnosis , Malaria, Vivax/diagnosis , Multiplex Polymerase Chain Reaction/methods , Plasmodium falciparum/genetics , RNA, Ribosomal, 18S/genetics , Sensitivity and Specificity
12.
bioRxiv ; 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35923316

ABSTRACT

Unvaccinated COVID-19 patients display a large spectrum of symptoms, ranging from asymptomatic to severe symptoms, the latter even causing death. Distinct Natural killer (NK) and CD4+ and CD8+ T cells immune responses are generated in COVID-19 patients. However, the phenotype and functional characteristics of NK cells and T-cells associated with COVID-19 pathogenesis versus protection remain to be elucidated. In this study, we compared the phenotype and function of NK cells SARS-CoV-2-specific CD4+ and CD8+ T cells in unvaccinated symptomatic (SYMP) and unvaccinated asymptomatic (ASYMP) COVID-19 patients. The expression of senescent CD57 marker, CD45RA/CCR7differentiation status, exhaustion PD-1 marker, activation of HLA-DR, and CD38 markers were assessed on NK and T cells from SARS-CoV-2 positive SYMP patients, ASYMP patients, and Healthy Donors (HD) using multicolor flow cytometry. We detected significant increases in the expression levels of both exhaustion and senescence markers on NK and T cells from SYMP patients compared to ASYMP patients and HD controls. In SYMP COVID-19 patients, the T cell compartment displays several alterations involving naive, central memory, effector memory, and terminally differentiated T cells. The senescence CD57 marker was highly expressed on CD8+ TEM cells and CD8+ TEMRA cells. Moreover, we detected significant increases in the levels of pro-inflammatory TNF-α, IFN-γ, IL-6, IL-8, and IL-17 cytokines from SYMP COVID-19 patients, compared to ASYMP COVID-19 patients and HD controls. The findings suggest exhaustion and senescence in both NK and T cell compartment is associated with severe disease in critically ill COVID-19 patients.

13.
Article in English | MEDLINE | ID: mdl-35411125

ABSTRACT

The humoral immune responses to blood-stage malaria proteins are requisite for the inhibition of parasite invasion. Plasmodium falciparum merozoite surface protein 3 (MSP3) is a secretory, expressed abundantly, merozoite surface protein that is important for the parasite invasion process. It has been shown to induce antibody responses during natural infections and is, therefore, considered to be the potential vaccine candidates against Plasmodium. Elucidating the immunogenicity and prevalence of anti-parasite antibodies is important in identifying potential targets as candidates for malarial diagnosis and anti-malarial vaccine. The present study concerns the presence of antibodies against the MSP3 proteins of human malaria parasite- P. falciparum in infected individuals from endemic regions of India. Seventy-one anonymized P. falciparum infected serum samples were procured from the malaria fever clinic of ICMR-National Institute of Malaria Research (NIMR), New Delhi to detect the presence of antibodies against MSP3 protein by ELISA. The IgM antibody response against recombinant MSP3 was detected at significantly higher levels during acute malaria. The protein was found to be immunogenic and did not demonstrate any cross-reactivity with the serum of uninfected individuals or individuals infected with other Plasmodium species. The protein has hydrophilic regions in its N- and C-terminus which may contain immunogenic linear and conformational B-cell epitopes. The results from this study suggest that the MSP3 is immunogenic and likely a potential candidate for antibody-based diagnosis or vaccine development against the blood-stage of P. falciparum.

14.
Sci Rep ; 11(1): 23640, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880324

ABSTRACT

The continued existence of Plasmodium parasites in physiologically distinct environments during their transmission in mosquitoes and vertebrate hosts requires effector proteins encoded by parasite genes to provide adaptability. Parasites utilize their robust stress response system involving heat shock proteins for their survival. Molecular chaperones are involved in maintaining protein homeostasis within a cell during stress, protein biogenesis and the formation of protein complexes. Due to their critical role in parasite virulence, they are considered targets for therapeutic interventions. Our results identified a putative P. berghei heat shock protein (HSP) belonging to the HSP40 family (HspJ62), which is abundantly induced upon heat stress and expressed during all parasite stages. To determine the role HspJ62, a gene-disrupted P. berghei transgenic line was developed (ΔHspJ62), which resulted in disruption of gametocyte formation. Such parasites were unable to form subsequent sexual stages because of disrupted gametogenesis, indicating the essential role of HspJ62 in gametocyte formation. Transcriptomic analysis of the transgenic line showed downregulation of a number of genes, most of which were specific to male or female gametocytes. The transcription factor ApiAP2 was also downregulated in ΔHspJ62 parasites. Our findings suggest that the downregulation of ApiAP2 likely disrupts the transcriptional regulation of sexual stage genes, leading to impaired gametogenesis. This finding also highlights the critical role that HspJ62 indirectly plays in the development of P. berghei sexual stages and in facilitating the conversion from the asexual blood stage to the sexual stage. This study characterizes the HspJ62 protein as a fertility factor because parasites lacking it are unable to transmit to mosquitoes. This study adds an important contribution to ongoing research aimed at understanding gametocyte differentiation and formation in parasites. The molecule adds to the list of potential drug targets that can be targeted to inhibit parasite sexual development and consequently parasite transmission.


Subject(s)
Gametogenesis/physiology , Heat-Shock Proteins/physiology , Plasmodium berghei/physiology , Protozoan Proteins/physiology , Animals , Female , Heat-Shock Proteins/genetics , Hot Temperature , Life Cycle Stages , Male
15.
Exp Cell Res ; 406(2): 112764, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34358525

ABSTRACT

Protein kinases of both the parasite and the host are crucial in parasite invasion and survival and might act as drug targets against drug-resistant malaria. STK35L1 was among the top five hits in kinome-wide screening, suggesting its role in malaria's liver stage. However, the role of host STK35L1 in malaria remains elusive. In this study, we found that STK35L1 was highly upregulated during the infection of Plasmodium berghei (P. berghei) in HepG2 cells and mice liver, and knockdown of STK35L1 remarkably suppressed the sporozoites' infection in HepG2 cells. We showed that STAT3 is upregulated and phosphorylated during P. berghei sporozoites' infection, and STAT3 activation is required for both the upregulation of STK35L1 and STAT3. Furthermore, we found that ten cell cycle genes were upregulated in the sporozoite-infected hepatocytes. Knockdown of STK35L1 inhibited the basal expression of these genes except CDKN3 and GTSE1 in HepG2 cells. Thus, we identified STK35L1 as a host kinase that plays an obligatory role in malaria's liver stage and propose that it may serve as a potential drug target against drug-resistant malaria.


Subject(s)
Cell Cycle Proteins/metabolism , Liver/parasitology , Malaria/parasitology , Plasmodium berghei/physiology , Protein Serine-Threonine Kinases/metabolism , STAT3 Transcription Factor/metabolism , Sporozoites/physiology , Animals , Cell Cycle Proteins/genetics , Female , Gene Expression Regulation , Hep G2 Cells , Humans , Liver/metabolism , Malaria/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/genetics , STAT3 Transcription Factor/genetics
16.
Infect Genet Evol ; 92: 104848, 2021 08.
Article in English | MEDLINE | ID: mdl-33823306

ABSTRACT

In spite of a decrease in malaria cases, the threat of malaria due to Plasmodium falciparum still prevails. The sequencing of Plasmodium falciparum reveals that approximately 60% of the Plasmodium genes code for hypothetical/putative proteins. Here we report an in silico characterization and localization of one such protein. This was encoded by one of the hub genes, in a weighted gene co-expression based systems network, from in-vivo samples of patients suffering from uncomplicated malaria or complicated malaria disease like jaundice and jaundice with renal failure. Interestingly, the protein PF3D7_0406000 (PFD0300w) is classified as a conserved protein of unknown function and shows no identity with any protein from the human host. The transcriptomic data shows up-regulation of transcripts in cases of malaria induced disease complications. PFD0300w peptide antibody based immunolocalization studies using a, gametocyte producing P. falciparum strain RKL-9, shows presence of the protein in the cytoplasm of both asexual and sexual stage parasites.


Subject(s)
Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Animals , Antibodies/genetics , Humans , Malaria, Falciparum/parasitology , Mice , Peptides/genetics , Transcriptome/genetics , Up-Regulation/genetics
17.
Front Immunol ; 12: 699887, 2021.
Article in English | MEDLINE | ID: mdl-34987497

ABSTRACT

The Plasmodium parasite has to cross various immunological barriers for successful infection. Parasites have evolved mechanisms to evade host immune responses, which hugely contributes to the successful infection and transmission by parasites. One way in which a parasite evades immune surveillance is by expressing molecular mimics of the host molecules in order to manipulate the host responses. In this study, we report a Plasmodium berghei hypothetical protein, PbTIP (PbANKA_124360.0), which is a Plasmodium homolog of the human T-cell immunomodulatory protein (TIP). The latter possesses immunomodulatory activities and suppressed the host immune responses in a mouse acute graft-versus-host disease (GvHD) model. The Plasmodium berghei protein, PbTIP, is expressed on the merozoite surface and exported to the host erythrocyte surface upon infection. It is shed in the blood circulation by the activity of an uncharacterized membrane protease(s). The shed PbTIP could be detected in the host serum during infection. Our results demonstrate that the shed PbTIP exhibits binding on the surface of macrophages and reduces their inflammatory cytokine response while upregulating the anti-inflammatory cytokines such as TGF-ß and IL-10. Such manipulated immune responses are observed in the later stage of malaria infection. PbTIP induced Th2-type gene transcript changes in macrophages, hinting toward its potential to regulate the host immune responses against the parasite. Therefore, this study highlights the role of a Plasmodium-released protein, PbTIP, in immune evasion using macrophages, which may represent the critical strategy of the parasite to successfully survive and thrive in its host. This study also indicates the human malaria parasite TIP as a potential diagnostic molecule that could be exploited in lateral flow-based immunochromatographic tests for malaria disease diagnosis.


Subject(s)
Host-Pathogen Interactions/immunology , Immune Evasion/immunology , Immunity, Innate , Macrophages/parasitology , Malaria/immunology , Plasmodium berghei/immunology , Protozoan Proteins/physiology , Amino Acid Sequence , Animals , Conserved Sequence , Cytokines/biosynthesis , Cytokines/genetics , Erythrocyte Membrane/chemistry , Erythrocytes/parasitology , Humans , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Malaria/parasitology , Mice , Mice, Inbred C57BL , Molecular Mimicry , Peptide Fragments/blood , Peptide Fragments/immunology , Protozoan Proteins/immunology , RAW 264.7 Cells , Recombinant Proteins/pharmacology , Sequence Alignment , Sequence Homology, Amino Acid , Transcriptome
18.
Immun Inflamm Dis ; 8(1): 50-61, 2020 03.
Article in English | MEDLINE | ID: mdl-31967737

ABSTRACT

INTRODUCTION: Efforts are required at developing an effective vaccine that can inhibit malaria prevalence and transmission. Identifying the critical immunogenic antigens and understanding their interactions with host proteins forms a major focus of subunit vaccine development. Previously, our laboratory showed that SLTRiP conferred protection to the liver stage of Plasmodium growth in rodents. In the follow-up of earlier research, we demonstrate that SLTRiP-mediated protection is majorly concentrated in specific regions of protein. METHOD: To identify particular protective regions of protein, we synthesized multiple nonoverlapping fragments from SLTRiP protein. From this, we designed a panel of 8-20mer synthetic peptides, which were predicted using T-epitope-based prediction algorithm. We utilized the IFN-γ enzyme-linked immunosorbent spot assay to identify immunodominant peptides. The latter were used to immunize mice, and these mice were challenged to assess protection. RESULTS: The protective polypeptide fragment SLTRiP C3 and SLTRiP C4 were identified, by expressing and testing multiple fragments of PbSLTRiP protein. The immune responses generated by these fragments were compared to identify the immunodominant fragment. The T-epitopes were predicted from SLTRiP protein using computer-based algorithms. The in vitro immune responses generated by these peptides were compared with each other to identify the immunodominant T-epitope. Immunization using these peptides showed significant reduction in parasite numbers during liver stage. CONCLUSION: Our findings show that the protective efficacy shown by SLTRiP is localized in particular protein fragments. The peptides designed from such regions showed protective efficacy equivalent to whole protein. The sequence conservation analysis with human Plasmodium species also showed that these peptides were conserved. In conclusion, these peptides or their equivalent from other Plasmodium species could impart protection against malaria in their respective hosts too. Our studies provide a basis for the inclusion of these peptides in clinical vaccine constructs against malaria.


Subject(s)
Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Malaria Vaccines/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/chemistry , Epitope Mapping , Female , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Male , Mice , Mice, Inbred C57BL , Peptide Fragments/chemistry , Peptide Fragments/immunology , Plasmodium falciparum
19.
ACS Infect Dis ; 5(2): 184-198, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30554511

ABSTRACT

The eradication of malaria remains challenging due to the complex life cycle of Plasmodium and the rapid emergence of drug-resistant forms of Plasmodium falciparum and Plasmodium vivax. New, effective, and inexpensive antimalarials against multiple life stages of the parasite are urgently needed to combat the spread of malaria. Here, we synthesized a set of novel hydroxyethylamines and investigated their activities in vitro and in vivo. All of the compounds tested had an inhibitory effect on the blood stage of P. falciparum at submicromolar concentrations, with the best showing 50% inhibitory concentrations (IC50) of around 500 nM against drug-resistant P. falciparum parasites. These compounds showed inhibitory actions against plasmepsins, a family of malarial aspartyl proteases, and exhibited a marked killing effect on blood stage Plasmodium. In chloroquine-resistant Plasmodium berghei and P. berghei ANKA infected mouse models, treating mice with both compounds led to a significant decrease in blood parasite load. Importantly, two of the compounds displayed an inhibitory effect on the gametocyte stages (III-V) of P. falciparum in culture and the liver-stage infection of P. berghei both in in vitro and in vivo. Altogether, our findings suggest that fast-acting hydroxyethylamine-phthalimide analogs targeting multiple life stages of the parasite could be a valuable chemical lead for the development of novel antimalarial drugs.


Subject(s)
Antimalarials/pharmacology , Aspartic Acid Endopeptidases/metabolism , Ethylamines/pharmacology , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemical synthesis , Chloroquine/analogs & derivatives , Drug Discovery , Ethylamines/chemical synthesis , Inhibitory Concentration 50 , Life Cycle Stages , Mice , Phthalimides/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...