Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
BMC Infect Dis ; 23(1): 326, 2023 May 15.
Article En | MEDLINE | ID: mdl-37189034

BACKGROUND: In this phase 2 randomised placebo-controlled clinical trial in patients with COVID-19, we hypothesised that blocking mineralocorticoid receptors using a combination of dexamethasone to suppress cortisol secretion and spironolactone is safe and may reduce illness severity. METHODS: Hospitalised patients with confirmed COVID-19 were randomly allocated to low dose oral spironolactone (50 mg day 1, then 25 mg once daily for 21 days) or standard of care in a 2:1 ratio. Both groups received dexamethasone 6 mg daily for 10 days. Group allocation was blinded to the patient and research team. Primary outcomes were time to recovery, defined as the number of days until patients achieved WHO Ordinal Scale (OS) category ≤ 3, and the effect of spironolactone on aldosterone, D-dimer, angiotensin II and Von Willebrand Factor (VWF). RESULTS: One hundred twenty patients with PCR confirmed COVID were recruited in Delhi from 01 February to 30 April 2021. 74 were randomly assigned to spironolactone and dexamethasone (SpiroDex), and 46 to dexamethasone alone (Dex). There was no significant difference in the time to recovery between SpiroDex and Dex groups (SpiroDex median 4.5 days, Dex median 5.5 days, p = 0.055). SpiroDex patients had significantly lower D-dimer levels on days 4 and 7 (day 7 mean D-dimer: SpiroDex 1.15 µg/mL, Dex 3.15 µg/mL, p = 0.0004) and aldosterone at day 7 (SpiroDex 6.8 ng/dL, Dex 14.52 ng/dL, p = 0.0075). There was no difference in VWF or angiotensin II levels between groups. For secondary outcomes, SpiroDex patients had a significantly greater number of oxygen free days and reached oxygen freedom sooner than the Dex group. Cough scores were no different during the acute illness, however the SpiroDex group had lower scores at day 28. There was no difference in corticosteroid levels between groups. There was no increase in adverse events in patients receiving SpiroDex. CONCLUSION: Low dose oral spironolactone in addition to dexamethasone was safe and reduced D-dimer and aldosterone. Time to recovery was not significantly reduced. Phase 3 randomised controlled trials with spironolactone and dexamethasone should be considered. TRIAL REGISTRATION: The trial was registered on the Clinical Trials Registry of India TRI: CTRI/2021/03/031721, reference: REF/2021/03/041472. Registered on 04/03/2021.


COVID-19 , Humans , Spironolactone/adverse effects , SARS-CoV-2 , Aldosterone , Angiotensin II , von Willebrand Factor , COVID-19 Drug Treatment , Dexamethasone/adverse effects , Treatment Outcome , Randomized Controlled Trials as Topic
2.
Front Immunol ; 14: 1100161, 2023.
Article En | MEDLINE | ID: mdl-36845117

Introduction: Pulmonary-resident memory T cells (TRM) and B cells (BRM) orchestrate protective immunity to reinfection with respiratory pathogens. Developing methods for the in situ detection of these populations would benefit both research and clinical settings. Methods: To address this need, we developed a novel in situ immunolabelling approach combined with clinic-ready fibre-based optical endomicroscopy (OEM) to detect canonical markers of lymphocyte tissue residency in situ in human lungs undergoing ex vivo lung ventilation (EVLV). Results: Initially, cells from human lung digests (confirmed to contain TRM/BRM populations using flow cytometry) were stained with CD69 and CD103/CD20 fluorescent antibodies and imaged in vitro using KronoScan, demonstrating it's ability to detect antibody labelled cells. We next instilled these pre-labelled cells into human lungs undergoing EVLV and confirmed they could still be visualised using both fluorescence intensity and lifetime imaging against background lung architecture. Finally, we instilled fluorescent CD69 and CD103/CD20 antibodies directly into the lung and were able to detect TRM/BRM following in situ labelling within seconds of direct intra-alveolar delivery of microdoses of fluorescently labelled antibodies. Discussion: In situ, no wash, immunolabelling with intra-alveolar OEM imaging is a novel methodology with the potential to expand the experimental utility of EVLV and pre-clinical models.


Immunologic Memory , Lung , Humans , Lung/diagnostic imaging , CD8-Positive T-Lymphocytes , Lymphocytes
3.
Am J Respir Crit Care Med ; 207(2): 138-149, 2023 01 15.
Article En | MEDLINE | ID: mdl-35972987

Rationale: High circulating galectin-3 is associated with poor outcomes in patients with coronavirus disease (COVID-19). We hypothesized that GB0139, a potent inhaled thiodigalactoside galectin-3 inhibitor with antiinflammatory and antifibrotic actions, would be safely and effectively delivered in COVID-19 pneumonitis. Objectives: Primary outcomes were safety and tolerability of inhaled GB0139 as an add-on therapy for patients hospitalized with COVID-19 pneumonitis. Methods: We present the findings of two arms of a phase Ib/IIa randomized controlled platform trial in hospitalized patients with confirmed COVID-19 pneumonitis. Patients received standard of care (SoC) or SoC plus 10 mg inhaled GB0139 twice daily for 48 hours, then once daily for up to 14 days or discharge. Measurements and Main Results: Data are reported from 41 patients, 20 of which were assigned randomly to receive GB0139. Primary outcomes: the GB0139 group experienced no treatment-related serious adverse events. Incidences of adverse events were similar between treatment arms (40 with GB0139 + SoC vs. 35 with SoC). Secondary outcomes: plasma GB0139 was measurable in all patients after inhaled exposure and demonstrated target engagement with decreased circulating galectin (overall treatment effect post-hoc analysis of covariance [ANCOVA] over days 2-7; P = 0.0099 vs. SoC). Plasma biomarkers associated with inflammation, fibrosis, coagulopathy, and major organ function were evaluated. Conclusions: In COVID-19 pneumonitis, inhaled GB0139 was well-tolerated and achieved clinically relevant plasma concentrations with target engagement. The data support larger clinical trials to determine clinical efficacy. Clinical trial registered with ClinicalTrials.gov (NCT04473053) and EudraCT (2020-002230-32).


COVID-19 , Humans , SARS-CoV-2 , Galectin 3 , Inflammation , Treatment Outcome
4.
EBioMedicine ; 76: 103856, 2022 Feb.
Article En | MEDLINE | ID: mdl-35152152

BACKGROUND: Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials in COVID19 without characterisation of Pharmacokinetics /Pharmacodynamics including safety data. One such drug is nafamostat mesylate. METHODS: We present the findings of a phase Ib/IIa open label, platform randomised controlled trial of intravenous nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), nafamostat or an alternative therapy. Nafamostat was administered as an intravenous infusion at a dose of 0.2 mg/kg/h for a maximum of seven days. The analysis population included those who received any dose of the trial drug and all patients randomised to SoC. The primary outcomes of our trial were the safety and tolerability of intravenous nafamostat as an add on therapy for patients hospitalised with COVID-19 pneumonitis. FINDINGS: Data is reported from 42 patients, 21 of which were randomly assigned to receive intravenous nafamostat. 86% of nafamostat-treated patients experienced at least one AE compared to 57% of the SoC group. The nafamostat group were significantly more likely to experience at least one AE (posterior mean odds ratio 5.17, 95% credible interval (CI) 1.10 - 26.05) and developed significantly higher plasma creatinine levels (posterior mean difference 10.57 micromol/L, 95% CI 2.43-18.92). An average longer hospital stay was observed in nafamostat patients, alongside a lower rate of oxygen free days (rate ratio 0.55-95% CI 0.31-0.99, respectively). There were no other statistically significant differences in endpoints between nafamostat and SoC. PK data demonstrated that intravenous nafamostat was rapidly broken down to inactive metabolites. We observed no significant anticoagulant effects in thromboelastometry. INTERPRETATION: In hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous nafamostat, and there were additional adverse events. FUNDING: DEFINE was funded by LifeArc (an independent medical research charity) under the STOPCOVID award to the University of Edinburgh. We also thank the Oxford University COVID-19 Research Response Fund (BRD00230).


Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Benzamidines/therapeutic use , COVID-19 Drug Treatment , Guanidines/therapeutic use , Administration, Intravenous , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Benzamidines/adverse effects , Benzamidines/pharmacokinetics , Biomarkers/blood , Biomarkers/metabolism , COVID-19/mortality , COVID-19/virology , Drug Administration Schedule , Female , Guanidines/adverse effects , Guanidines/pharmacokinetics , Half-Life , Humans , Immunophenotyping , Kaplan-Meier Estimate , Male , Middle Aged , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Treatment Outcome , Viral Load
5.
Clin Interv Aging ; 13: 1649-1656, 2018.
Article En | MEDLINE | ID: mdl-30237701

Bronchiectasis is a chronic lung disease with permanently damaged airways predisposing to recurrent respiratory tract infections. There is an increasing prevalence of bronchiectasis in the elderly, affecting approximately 10 patients per 1,000 population. Studies have shown that older, frailer patients tend to have a more severe and symptomatic disease, with those aged 80 and above with worse quality of life, increased hospitalization and increased mortality. These patients will be encountered by clinicians working in all aspects of elderly care. This review covers the various investigations and aspects of treatment for bronchiectasis and how they may be utilized in a more older and generally frailer population.


Bronchiectasis/epidemiology , Geriatric Assessment , Quality of Life , Aged , Global Health , Humans , Prevalence
6.
Chest ; 151(2): 383-388, 2017 02.
Article En | MEDLINE | ID: mdl-27720881

BACKGROUND: Interest in the association of vascular disease with COPD and pneumonia has increased, but there is a lack of research in this area with patients with bronchiectasis. METHODS: A retrospective study of 400 patients attending a specialist bronchiectasis clinic in NHS Lothian (Edinburgh, UK) between May 2013 and September 2014 was conducted. The study assessed the prevalence of vascular disease (ischemic heart disease, cerebrovascular disease, peripheral vascular disease, and atrial fibrillation). Using multivariable models, independent risk factors were identified for vascular disease that developed following the diagnosis of bronchiectasis. RESULTS: The study included 400 patients. There was preexisting vascular disease (ie, before the diagnosis of bronchiectasis) in 44 patients (11%), and vascular disease occurred after the diagnosis of bronchiectasis after a mean of 9.4 years (95% CI, 6.0-12.8 years) in 45 patients (11%). Independent factors associated with all-cause vascular disease after the diagnosis of bronchiectasis included male sex, hypertension, receiving long-term statin therapy, and having moderate-severity bronchiectasis or worse. CONCLUSIONS: In conclusion, bronchiectasis severity is independently associated with the development of vascular disease after the diagnosis of bronchiectasis. Future studies addressing the impact of primary and secondary prevention are warranted.


Bronchiectasis/epidemiology , Cardiovascular Diseases/epidemiology , Adrenal Cortex Hormones/therapeutic use , Adrenergic beta-2 Receptor Agonists/therapeutic use , Aged , Atrial Fibrillation/epidemiology , Bronchiectasis/drug therapy , Bronchiectasis/physiopathology , Cerebrovascular Disorders/epidemiology , Cohort Studies , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypertension/epidemiology , Male , Middle Aged , Multivariate Analysis , Muscarinic Antagonists/therapeutic use , Myocardial Ischemia/epidemiology , Peripheral Vascular Diseases/epidemiology , Prevalence , Retrospective Studies , Risk Factors , Severity of Illness Index , Sex Factors , United Kingdom/epidemiology
...