Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542294

ABSTRACT

An important hallmark of radiation dermatitis is the impairment of the mitotic ability of the stem/progenitor cells in the basal cell layers due to radiation-induced DNA damage, leading to suppressed cell renewal in the epidermis. However, this mechanism alone does not adequately explain the complex pathogenesis of radiation-induced skin injury. In this review, we summarize the latest findings on the complex pathogenesis of radiation dermatitis and correlate these with the clinical features of radiation-induced skin reactions. The current studies show that skin exposure to ionizing radiation induces cellular senescence in the epidermal keratinocytes. As part of their epithelial stress response, these senescent keratinocytes secrete pro-inflammatory mediators, thereby triggering skin inflammation. Keratinocyte-derived cytokines and chemokines modulate intercellular communication with the immune cells, activating skin-resident and recruiting skin-infiltrating immune cells within the epidermis and dermis, thereby orchestrating the inflammatory response to radiation-induced tissue damage. The increased expression of specific chemoattractant chemokines leads to increased recruitment of neutrophils into the irradiated skin, where they release cytotoxic granules that are responsible for the exacerbation of an inflammatory state. Moreover, the importance of IL-17-expressing γδ-T cells to the radiation-induced hyperproliferation of keratinocytes was demonstrated, leading to reactive hyperplasia of the epidermis. Radiation-induced, reactive hyperproliferation of the keratinocytes disturbs the fine-tuned keratinization and cornification processes, leading to structural dysfunction of the epidermal barrier. In summary, in response to ionizing radiation, epidermal keratinocytes have important structural and immunoregulatory barrier functions in the skin, coordinating interacting immune responses to eliminate radiation-induced damage and to initiate the healing process.


Subject(s)
Dermatitis , Radiodermatitis , Skin Neoplasms , Humans , Epidermis/metabolism , Keratinocytes/metabolism , Skin/pathology , Radiodermatitis/pathology , Dermatitis/pathology , Skin Neoplasms/pathology , Chemokines/metabolism
2.
Int J Radiat Oncol Biol Phys ; 118(3): 801-816, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37758068

ABSTRACT

PURPOSE: Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS: H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS: In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS: Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.


Subject(s)
Histones , Radiodermatitis , Animals , Mice , Histones/metabolism , Skin/radiation effects , Keratinocytes/physiology , Radiation, Ionizing , Cellular Senescence/radiation effects
3.
Cells ; 12(20)2023 10 10.
Article in English | MEDLINE | ID: mdl-37887271

ABSTRACT

BACKGROUND: Heavy ion irradiation (IR) with high-linear energy transfer (LET) is characterized by a unique depth dose distribution and increased biological effectiveness. Following high-LET IR, localized energy deposition along the particle trajectories induces clustered DNA lesions, leading to low electron density domains (LEDDs). To investigate the spatiotemporal dynamics of DNA repair and chromatin remodeling, we established the automated image analysis of transmission electron micrographs. METHODS: Human fibroblasts were irradiated with high-LET carbon ions or low-LET photons. At 0.1 h, 0.5 h, 5 h, and 24 h post-IR, nanoparticle-labeled repair factors (53BP1, pKu70, pKu80, DNA-PKcs) were visualized using transmission electron microscopy in interphase nuclei to monitor the formation and repair of DNA damage in the chromatin ultrastructure. Using AI-based software tools, advanced image analysis techniques were established to assess the DNA damage pattern following low-LET versus high-LET IR. RESULTS: Low-LET IR induced single DNA lesions throughout the nucleus, and most DNA double-strand breaks (DSBs) were efficiently rejoined with no visible chromatin decondensation. High-LET IR induced clustered DNA damage concentrated along the particle trajectories, resulting in circumscribed LEDDs. Automated image analysis was used to determine the exact number of differently sized nanoparticles, their distance from one another, and their precise location within the micrographs (based on size, shape, and density). Chromatin densities were determined from grayscale features, and nanoparticles were automatically assigned to euchromatin or heterochromatin. High-LET IR-induced LEDDs were delineated using automated segmentation, and the spatial distribution of nanoparticles in relation to segmented LEDDs was determined. CONCLUSIONS: The results of our image analysis suggest that high-LET IR induces chromatin relaxation along particle trajectories, enabling the critical repair of successive DNA damage. Following exposure to different radiation qualities, automated image analysis of nanoparticle-labeled DNA repair proteins in the chromatin ultrastructure enables precise characterization of specific DNA damage patterns.


Subject(s)
Chromatin , Electrons , Humans , DNA Damage , Heterochromatin , DNA
4.
Cancers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37296960

ABSTRACT

Cranial radiotherapy is a known risk factor for neurocognitive impairment in cancer survivors. Although radiation-induced cognitive dysfunction is observed in patients of all ages, children seem to be more vulnerable than adults to suffering age-related deficits in neurocognitive skills. So far, the underlying mechanisms by which IR negatively influences brain functions as well as the reasons for the profound age dependency are still insufficiently known. We performed a comprehensive Pubmed-based literature search to identify original research articles that reported on age dependency of neurocognitive dysfunction following cranial IR exposure. Numerous clinical trials in childhood cancer survivors indicate that the severity of radiation-induced cognitive dysfunction is clearly dependent on age at IR exposure. These clinical findings were related to the current state of experimental research providing important insights into the age dependency of radiation-induced brain injury and the development of neurocognitive impairment. Research in pre-clinical rodent models demonstrates age-dependent effects of IR exposure on hippocampal neurogenesis, radiation-induced neurovascular damage and neuroinflammation.

5.
Radiat Oncol ; 18(1): 64, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029409

ABSTRACT

BACKGROUND: The high susceptibility of the hippocampus region to radiation injury is likely the causal factor of neurocognitive dysfunctions after exposure to ionizing radiation. Repetitive exposures with even low doses have been shown to impact adult neurogenesis and induce neuroinflammation. We address the question whether the out-of-field doses during radiotherapy of common tumour entities may pose a risk for the neuronal stem cell compartment in the hippocampus. METHODS: The dose to the hippocampus was determined for a single fraction according to different treatment plans for the selected tumor entities: Point dose measurements were performed in an anthropomorphic Alderson phantom and the out-of-field dose to the hippocampus was measured using thermoluminescence dosimeters. RESULTS: For carcinomas in the head and neck region the dose exposure to the hippocampal region for a single fraction ranged from to 37.4 to 154.8 mGy. The hippocampal dose was clearly different for naso-, oro- and hypopharynx, with maximal values for nasopharynx carcinoma. In contrast, hippocampal dose levels for breast and prostate cancer ranged between 2.7 and 4.1 mGy, and therefore significantly exceeded the background irradiation level. CONCLUSION: The mean dose to hippocampus for treatment of carcinomas in the head and neck region is high enough to reduce neurocognitive functions. In addition, care must be taken regarding the out of field doses. The mean dose is mainly related to scattering effects, as is confirmed by the data from breast or prostate treatments, with a very different geometrical set-up but similar dosimetric results.


Subject(s)
Carcinoma , Radiotherapy, Intensity-Modulated , Male , Adult , Humans , Radiotherapy Dosage , Hippocampus , Head , Neck , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging
6.
Z Med Phys ; 2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37088675

ABSTRACT

INTRODUCTION: Image guided radiotherapy allows for particularly conformal tumour irradiation through precise patient positioning. Becoming the standard for radiotherapy, this increases imaging doses to the patient. The Halcyon 3.0 linear accelerator (Varian Medical Systems, Palo Alto, CA) requires daily imaging due to its geometry. For this reason, the accelerator is equipped with on-line kV and MV imaging. However, daily CBCT images required for irradiation apply additional radiation, which increases the dose to normal tissue and therefore can affect the patient's secondary cancer risk. In this study, actual organ doses were measured for the kV system, and a comparison of normal tissue doses for all available kV CBCT protocols was presented to demonstrate differences in imaging doses across entities and protocols. In addition, effective dose and secondary cancer risk from imaging are evaluated. MATERIAL AND METHODS: Measurements were performed with thermoluminescent dosimeters in an anthropomorphic phantom positioned according to each entity (brain, head and neck, breast, lung, pelvis). CBCT images were obtained, using all available pre-set protocols without further adjustment of the parameters. Measured doses for each position and each protocol were then compared and secondary cancer risk of relevant and specifically radiosensitive organs was calculated. RESULTS: It was found that imaging doses for protocols such as Pelvis and Head could be reduced by up to half using the corresponding Fast and Low Dose modes, respectively. On the other hand, larger field sizes or the Large mode yielded higher doses than their initial protocols. Image Gently was found to spare normal tissue best, however it is not suitable for certain entities due to low image quality or insufficient projection data. DISCUSSION: By using appropriate kV-CBCT protocols, it is possible to reduce imaging doses to a significant extent and therefore spare healthy tissue. Combined with studies of image quality, the results of this study could lead to adjustments in workflow regarding the choice of protocols used in daily routine. This could prevent unnecessary radiation exposure and reduce secondary cancer risk.

7.
Cells ; 12(6)2023 03 16.
Article in English | MEDLINE | ID: mdl-36980257

ABSTRACT

PURPOSE: Radiation-induced senescence is characterized by profound changes in chromatin organization with the formation of Senescence-Associated-Heterochromatin-Foci (SAHF) and DNA-Segments-with-Chromatin-Alterations-Reinforcing-Senescence (DNA-SCARS). Importantly, senescent cells also secrete complex combinations of pro-inflammatory factors, referred as Senescence-Associated-Secretory-Phenotype (SASP). Here, we analyzed the epigenetic mechanism of histone variant H2A.J in establishing radiation-induced senescence. EXPERIMENTAL DESIGN: Primary and genetically-modified lung fibroblasts with down- or up-regulated H2A.J expression were exposed to ionizing radiation and were analyzed for the formation of SAHF and DNA-SCARS by immunofluorescence microscopy. Dynamic changes in chromatin organization and accessibility, transcription factor recruitment, and transcriptome signatures were mapped by ATAC-seq and RNA-seq analysis. The secretion of SASP factors and potential bystander effects were analyzed by ELISA and RT-PCR. Lung tissue of mice exposed to different doses were analyzed by the digital image analysis of H2A.J-immunohistochemistry. RESULTS: Differential incorporation of H2A.J has profound effects on higher-order chromatin organization and on establishing the epigenetic state of senescence. Integrative analyses of ATAC-seq and RNA-seq datasets indicate that H2A.J-associated changes in chromatin accessibility of regulatory regions decisively modulates transcription factor recruitment and inflammatory gene expression, resulting in an altered SASP secretome. In lung parenchyma, pneumocytes show dose-dependent H2A.J expression in response to radiation-induced DNA damage, therefore contributing to pro-inflammatory tissue reactions. CONCLUSIONS: The fine-tuned incorporation of H2A.J defines the epigenetic landscape for driving the senescence programme in response to radiation-induced DNA damage. Deregulated H2A.J deposition affects chromatin remodeling, transcription factor recruitment, and the pro-inflammatory secretome. Our findings provide new mechanistic insights into DNA-damage triggered epigenetic mechanisms governing the biological processes of radiation-induced injury.


Subject(s)
Cicatrix , Histones , Animals , Mice , Histones/metabolism , Chromatin , Heterochromatin , Transcription Factors/metabolism , Radiation, Ionizing
8.
Cancers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36428572

ABSTRACT

BACKGROUND: Despite technical advances in hippocampus-sparing radiotherapy, radiation-induced injury to neural stem cell compartments may affect neurocognitive functions. In pre-clinical mouse models with fractionated low-dose radiation (FLDR) and single-dose radiation (SDR), the accurate response to radiation-induced injury was analyzed in different hippocampal subregions. METHODS: Adult and juvenile C57BL/6NCrl mice were exposed to FLDR (20 × 0.1 Gy, daily exposure from Monday to Friday for 4 weeks) or SDR (1 × 2 Gy). In addition, 72 h after the last exposure, neuroglia (astrocytes and microglia) and neuroprogenitor cells were characterized and quantified in the hippocampal cornu ammonis (CA) and dentate gyrus (DG) by immunofluorescence studies. RESULTS: After analyzing different hippocampal subregions, it was observed that radiation responses varied between non-neurogenic CA, with no detectable inflammatory alterations, and neurogenic DG, characterized by impaired neurogenesis and subsequent neuroinflammation. Age-dependent differences in radiosensitivity appeared to depend on the varying proliferative potential of neural stem cell niches. Using the same overall dose for FLDR and SDR (2 Gy), both the cumulative dose over time and also the single dose fraction have decisive impacts on hippocampal damage. CONCLUSION: Region-specific effects of radiation-induced hippocampal injury relies primarily on cell deaths of proliferating neuroprogenitors. Dose per fraction defines the extent of neuronal injury, and subsequently activated microglia and reactive astrocytes modulate dynamic processes of neuroinflammation. Thus, limiting both cumulative doses and dose fractions to hippocampal DG is an important issue of clinical radiotherapy to preserve neurocognitive functions.

9.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077226

ABSTRACT

PURPOSE: Precise molecular and cellular mechanisms of radiation-induced dermatitis are incompletely understood. Histone variant H2A.J is associated with cellular senescence and modulates senescence-associated secretory phenotype (SASP) after DNA-damaging insults, such as ionizing radiation (IR). Using ex vivo irradiated cultured foreskin, H2A.J was analyzed as a biomarker of radiation-induced senescence, potentially initiating the inflammatory cascade of radiation-induced skin injury. METHODS: Human foreskin explants were collected from young donors, irradiated ex vivo with 10 Gy, and cultured in air-liquid interphase for up to 72 h. At different time-points after ex vivo IR exposure, the foreskin epidermis was analyzed for proliferation and senescence markers by immunofluorescence and immunohistochemical staining of sectioned tissue. Secretion of cytokines was measured in supernatants by ELISA. Using our mouse model with fractionated in vivo irradiation, H2A.J expression was analyzed in epidermal stem/progenitor cell populations localized in different regions of murine hair follicles (HF). RESULTS: Non-vascularized foreskin explants preserved their tissue homeostasis up to 72 h (even after IR exposure), but already non-irradiated foreskin epithelium expressed high levels of H2A.J in all epidermal layers and secreted high amounts of cytokines. Unexpectedly, no further increase in H2A.J expression and no obvious upregulation of cytokine secretion was observed in the foreskin epidermis after ex vivo IR. Undifferentiated keratinocytes in murine HF regions, by contrast, revealed low H2A.J expression in non-irradiated skin and significant radiation-induced H2A.J upregulations at different time-points after IR exposure. Based on its staining characteristics, we presume that H2A.J may have previously underestimated the importance of the epigenetic regulation of keratinocyte maturation. CONCLUSIONS: Cultured foreskin characterized by highly keratinized epithelium and specific immunological features is not an appropriate model for studying H2A.J-associated tissue reactions during radiation-induced dermatitis.


Subject(s)
Foreskin , Radiodermatitis , Animals , Cells, Cultured , Cellular Senescence/radiation effects , Cytokines , Epigenesis, Genetic , Histones , Humans , Male , Mice , Radiation, Ionizing
10.
J Tissue Eng ; 13: 20417314221109957, 2022.
Article in English | MEDLINE | ID: mdl-35923176

ABSTRACT

Chronic lymphedema after cancer treatment is common and there is still no cure for this disease. We herein investigated the lymphangiogenic capacity of adipose tissue-derived microvascular fragments (MVF), which contain stem cells and lymphatic vessel fragments. Secondary lymphedema was induced in the hindlimbs of C57BL/6J mice. Green fluorescence protein (GFP)+ MVF were isolated from transgenic C57BL/6Tg (CAG-EGFP)1Osb/J mice, suspended in collagen hydrogel, and injected in the lymphadenectomy defect of wild-type animals. This crossover model allowed the detection of MVF-derived blood and lymphatic vessels after transplantation. The MVF group was compared with animals receiving collagen hydrogel only or a sham intervention. Lymphangiogenic effects were analyzed using volumetry, magnetic resonance (MR) lymphography, histology, and immunohistochemistry. MVF injection resulted in reduced hindlimb volumes when compared to non-treated controls. MR lymphography revealed lymphatic regeneration with reduced dermal backflow after MVF treatment. Finally, MVF transplantation promoted popliteal angiogenesis and lymphangiogenesis associated with a significantly increased microvessel and lymphatic vessel density. These findings indicate that MVF transplantation represents a promising approach to induce therapeutic lymphangiogenesis.

11.
Cells ; 11(2)2022 01 13.
Article in English | MEDLINE | ID: mdl-35053389

ABSTRACT

Irreparable DNA damage following ionizing radiation (IR) triggers prolonged DNA damage response and induces premature senescence. Cellular senescence is a permanent state of cell-cycle arrest characterized by chromatin restructuring, altered nuclear morphology and acquisition of secretory phenotype, which contributes to senescence-related inflammation. However, the mechanistic connections for radiation-induced DNA damage that trigger these senescence-associated hallmarks are poorly understood. In our in vitro model of radiation-induced senescence, mass spectrometry-based proteomics was combined with high-resolution imaging techniques to investigate the interrelations between altered chromatin compaction, nuclear envelope destabilization and nucleo-cytoplasmic chromatin blebbing. Our findings confirm the general pathophysiology of the senescence-response, with disruption of nuclear lamin organization leading to extensive chromatin restructuring and destabilization of the nuclear membrane with release of chromatin fragments into the cytosol, thereby activating cGAS-STING-dependent interferon signaling. By serial block-face scanning electron microscopy (SBF-SEM) whole-cell datasets were acquired to investigate the morphological organization of senescent fibroblasts. High-resolution 3-dimensional (3D) reconstruction of the complex nuclear shape allows us to precisely visualize the segregation of nuclear blebs from the main nucleus and their fusion with lysosomes. By multi-view 3D electron microscopy, we identified nanotubular channels formed in lamin-perturbed nuclei of senescent fibroblasts; the potential role of these nucleo-cytoplasmic nanotubes for expulsion of damaged chromatin has to be examined.


Subject(s)
Cell Nucleus/radiation effects , Cell Nucleus/ultrastructure , Cellular Senescence/radiation effects , Fibroblasts/radiation effects , Fibroblasts/ultrastructure , Imaging, Three-Dimensional , Microscopy, Electron , Radiation, Ionizing , Cell Line , Cell Nucleus/pathology , Cell Shape/radiation effects , Chromatin Assembly and Disassembly , Fibroblasts/pathology , Humans , Nanotubes/ultrastructure , Proteomics
12.
Genes (Basel) ; 12(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34828271

ABSTRACT

H2A.J is a poorly studied mammalian-specific variant of histone H2A. We used immunohistochemistry to study its localization in various human and mouse tissues. H2A.J showed cell-type specific expression with a striking enrichment in luminal epithelial cells of multiple glands including those of breast, prostate, pancreas, thyroid, stomach, and salivary glands. H2A.J was also highly expressed in many carcinoma cell lines and in particular, those derived from luminal breast and prostate cancer. H2A.J thus appears to be a novel marker for luminal epithelial cancers. Knocking-out the H2AFJ gene in T47D luminal breast cancer cells reduced the expression of several estrogen-responsive genes which may explain its putative tumorigenic role in luminal-B breast cancer.


Subject(s)
Endocrine Glands/metabolism , Epithelial Cells/metabolism , Histones/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Endocrine Glands/pathology , Epithelial Cells/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Variation , Histones/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity/genetics , Pregnancy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
13.
Int J Radiat Oncol Biol Phys ; 111(5): 1262-1275, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34280471

ABSTRACT

PURPOSE: Despite major technical advances in hippocampus-sparing radiation therapy, radiation-induced injury to the neural stem cell compartment may affect neurocognitive functions. In the brain, glial cells modulate neuronal functions and are major mediators of neuroinflammation. In a preclinical mouse model with fractionated low-dose radiation (LDR), the complex response to radiation-induced injury was analyzed in the hippocampal stem cell compartment over a period of 6 months. METHODS AND MATERIALS: Adult and juvenile C57BL/6NCrl mice were exposed to low doses of ionizing radiation (IR; 20 fractions of 0.1 Gy, for up to 4 weeks) daily. At 72 hours and 1, 3, and 6 months after fractionated LDR, magnetic resonance imaging (9.4 T) was conducted to detect structural and functional abnormalities in the hippocampal region. Using immunofluorescence and histologic studies, neuroglia cells (astrocytes, microglia, oligodendrocytes) were quantified and neuroinflammatory responses were characterized in the hippocampal dentate gyrus. Using in vivo bromodeoxyuridine labeling, the cell fate of newly generated progenitor cells was tracked in the subgranular zone of the dentate gyrus during fractionated LDR. RESULTS: Low doses of IR induced long-lasting inflammatory responses with local increases of activated microglia and reactive astrocytes, which were most pronounced in the juvenile hippocampus within the first months after LDR. Glial activation with the consequent release of proinflammatory mediators increased local blood flow and vascular permeability in the hippocampal region. Cell fate mapping of progenitors located in the subgranular zone revealed a transient shift from neurogenesis to gliogenesis. CONCLUSIONS: Glial cell activation and transient neuroinflammation may reflect radiation-induced neuronal damage in the hippocampal stem cell niche. The increased proliferative capacity of the developing brain may explain the enhanced hippocampal radiosensitivity, with stronger inflammatory reactions in the juvenile hippocampus. Thus, limiting the radiation dose to the hippocampal region is an important issue of clinical radiation therapy at all ages to preserve neurocognitive functions.


Subject(s)
Neural Stem Cells , Stem Cell Niche , Animals , Dentate Gyrus , Hippocampus , Inflammation , Mice , Mice, Inbred C57BL , Neurogenesis , Neuroinflammatory Diseases
14.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299263

ABSTRACT

BACKGROUND: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by single and multiple carbon ions were analyzed in the nuclear chromatin environment by different high-resolution microscopy approaches. MATERIAL AND METHODS: Using the heavy-ion microbeam SNAKE, fibroblast monolayers were irradiated with defined numbers of carbon ions (1/10/100 ions per pulse, ipp) focused to micrometer-sized stripes or spots. Radiation-induced lesions were visualized as DNA damage foci (γH2AX, 53BP1) by conventional fluorescence and stimulated emission depletion (STED) microscopy. At micro- and nanoscale level, DNA double-strand breaks (DSBs) were visualized within their chromatin context by labeling the Ku heterodimer. Single and clustered pKu70-labeled DSBs were quantified in euchromatic and heterochromatic regions at 0.1 h, 5 h and 24 h post-IR by transmission electron microscopy (TEM). RESULTS: Increasing numbers of carbon ions per beam spot enhanced spatial clustering of DNA lesions and increased damage complexity with two or more DSBs in close proximity. This effect was detectable in euchromatin, but was much more pronounced in heterochromatin. Analyzing the dynamics of damage processing, our findings indicate that euchromatic DSBs were processed efficiently and repaired in a timely manner. In heterochromatin, by contrast, the number of clustered DSBs continuously increased further over the first hours following IR exposure, indicating the challenging task for the cell to process highly clustered DSBs appropriately. CONCLUSION: Increasing numbers of carbon ions applied to sub-nuclear chromatin regions enhanced the spatial clustering of DSBs and increased damage complexity, this being more pronounced in heterochromatic regions. Inefficient processing of clustered DSBs may explain the enhanced therapeutic efficacy of particle-based radiotherapy in cancer treatment.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA/radiation effects , Heavy Ion Radiotherapy/adverse effects , Cell Culture Techniques , Cluster Analysis , DNA Damage/radiation effects , DNA Repair/radiation effects , Euchromatin/genetics , Euchromatin/radiation effects , Fibroblasts , Heavy Ion Radiotherapy/methods , Heavy Ions/adverse effects , Heterochromatin/genetics , Heterochromatin/radiation effects , Humans , Ku Autoantigen/genetics , Ku Autoantigen/radiation effects , Linear Energy Transfer/radiation effects , Microscopy, Electron/methods , Radiation, Ionizing
15.
NPJ Aging Mech Dis ; 7(1): 7, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33795696

ABSTRACT

Cellular senescence is an irreversible growth arrest that occurs as a result of damaging stimuli, including DNA damage and/or telomere shortening. Here, we investigate histone variant H2A.J as a new biomarker to detect senescent cells during human skin aging. Skin biopsies from healthy volunteers of different ages (18-90 years) were analyzed for H2A.J expression and other parameters involved in triggering and/or maintaining cellular senescence. In the epidermis, the proportions of H2A.J-expressing keratinocytes increased from ≈20% in young to ≈60% in aged skin. Inverse correlations between Ki67- and H2A.J staining in germinative layers may reflect that H2A.J-expressing cells having lost their capacity to divide. As cellular senescence is triggered by DNA-damage signals, persistent 53BP1-foci, telomere lengths, and telomere-associated damage foci were analyzed in epidermal keratinocytes. Only slight age-related telomere attrition and few persistent nuclear 53BP1-foci, occasionally colocalizing with telomeres, suggest that unprotected telomeres are not a significant cause of senescence during skin aging. Quantification of integrin-α6+ basal cells suggests that the number and function of stem/progenitor cells decreased during aging and their altered proliferation capacities resulted in diminished tissue renewal with epidermal thinning. Collectively, our findings suggest that H2A.J is a sensitive marker of epidermal aging in human skin.

16.
Article in English | MEDLINE | ID: mdl-33551102

ABSTRACT

Ataxia-telangiectasia (AT) is a rare inherited recessive disorder which is caused by a mutated Ataxia-telangiectasia mutated (ATM) gene. Hallmarks include chromosomal instability, cancer predisposition and increased sensitivity to ionizing radiation. The ATM protein plays an important role in signaling of DNA double-strand breaks (DSB), thereby phosphorylating the histone H2A.X. Non-functional ATM protein leads to defects in DNA damage response, unresolved DSBs and genomic instability. The aim of this study was to evaluate chromosomal aberrations and γH2A.X foci as potential radiation sensitivity biomarkers in AT patients. For this purpose, lymphocytes of 8 AT patients and 10 healthy controls were irradiated and induced DNA damage and DNA repair capacity were detected by the accumulation of γH2A.X foci. The results were heterogeneous among AT patients. Evaluation revealed 2 AT patients with similar γH2A.X foci numbers as controls after 1 h while 3 patients showed a lower induction. In regard to DNA repair, 3 of 5 AT patients showed poor damage repair. Therefore, DNA damage induction and DNA repair as detected by H2A.X phosphorylation revealed individual differences, seems to depend on the underlying individual mutation and thus appears not well suited as a biomarker for radiation sensitivity. In addition, chromosomal aberrations were analyzed by mFISH. An increased frequency of spontaneous chromosomal breakage was characteristic for AT cells. After irradiation, significantly increased rates for non-exchange aberrations, translocations, complex aberrations and dicentric chromosomes were observed in AT patients compared to controls. The results of this study suggested, that complex aberrations and dicentric chromosomes might be a reliable biomarker for radiation sensitivity in AT patients, while non-exchange aberrations and translocations identified both, spontaneous and radiation-induced chromosomal instability.


Subject(s)
Ataxia Telangiectasia/genetics , Chromosome Aberrations , Histones/genetics , Radiation Tolerance , Adolescent , Adult , Ataxia Telangiectasia/pathology , Ataxia Telangiectasia/radiotherapy , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Case-Control Studies , Child , Child, Preschool , DNA Repair , Female , Humans , Male , Phosphorylation , Radiation, Ionizing , Young Adult
17.
Int J Mol Sci ; 21(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266246

ABSTRACT

Irreparable double-strand breaks (DSBs) in response to ionizing radiation (IR) trigger prolonged DNA damage response (DDR) and induce premature senescence. Profound chromatin reorganization with formation of senescence-associated heterochromatin foci (SAHF) is an essential epigenetic mechanism for controlling the senescence-associated secretory phenotype (SASP). To decipher molecular mechanisms provoking continuous DDR leading to premature senescence, radiation-induced DSBs (53BP1-foci) and dynamics of histone variant H2A.J incorporation were analyzed together with chromatin re-modeling in human fibroblasts after IR exposure. High-resolution imaging by transmission electron microscopy revealed that persisting 53BP1-foci developed into DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS), consistently located at the periphery of SAHFs. Quantitative immunogold-analysis by electron microscopy revealed that H2A.J, steadily co-localizing with 53BP1, is increasingly incorporated into DNA-SCARS during senescence progression. Strikingly, shRNA-mediated H2A.J depletion in fibroblasts modified senescence-associated chromatin re-structuring and abolished SASP, thereby shutting down the production of inflammatory mediators. These findings provide mechanistic insights into biological phenomena of SASP and suggest that H2A.J inhibition could ablate SASP, without affecting the senescence-associated growth arrest.


Subject(s)
Cellular Senescence/radiation effects , DNA Damage , Genetic Variation , Histones/biosynthesis , Histones/genetics , Radiation, Ionizing , Epigenesis, Genetic , Heterochromatin/genetics , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Humans
18.
Strahlenther Onkol ; 196(9): 821-833, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32006067

ABSTRACT

PURPOSE: 53BP1 foci detection in peripheral blood lymphocytes (PBLs) by immunofluorescence microscopy (IFM) is a sensitive and quantifiable DNA double-strand break (DSB) marker. In addition, high-resolution transmission electron microscopy (TEM) with immunogold labeling of 53BP1 and DSB-bound phosphorylated Ku70 (pKu70) can be used to determine the progression of the DNA repair process. To establish this TEM method in the PBLs of patients with cancer, we analyzed and characterized whether different modes of irradiation influence the formation of DSBs, and whether accompanying chemotherapy influences DSB formation. METHODS: We obtained 86 blood samples before and 0.1, 0.5, and 24 h after irradiation from patients (n = 9) with head and neck or rectal cancers receiving radiotherapy (RT; n = 4) or radiochemotherapy (RCT; n = 5). 53BP1 foci were quantified by IFM. In addition, TEM was used to quantify gold-labelled pKu70 dimers and 53BP1 clusters within euchromatin and heterochromatin of PBLs. RESULTS: IFM analyses showed that during radiation therapy, persistent 53BP1 foci in PBLs accumulated with increasing numbers of administered RT fractions. This 53BP1 foci accumulation was not influenced by the irradiation technique applied (3D conformal radiotherapy versus intensity-modulated radiotherapy), dose intensity per fraction, number of irradiation fields, or isodose volume. However, more 53BP1 foci were detected in PBLs of patients treated with accompanying chemotherapy. TEM analyses showed that DSBs, indicated by pKu70, were present for longer periods in PBLs of RCT patients than in PBLs of RT only patients. Moreover, not every residual 53BP1 focus was equivalent to a remaining DSB, since pKu70 was not present at every damage site. Persistent 53BP1 clusters, visualized by TEM, without colocalizing pKu70 likely indicate chromatin alterations after repair completion or, possibly, defective repair. CONCLUSION: IFM 53BP1 foci analyses alone are not adequate to determine individual repair capacity after irradiation of PBLs, as a DSB may be indicated by a 53BP1 focus but not every 53BP1 focus represents a DSB.


Subject(s)
Head and Neck Neoplasms/pathology , Ku Autoantigen/analysis , Lymphocytes/pathology , Rectal Neoplasms/pathology , Tumor Suppressor p53-Binding Protein 1/analysis , Aged , DNA Damage , DNA Repair , Female , Fluorescent Antibody Technique , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Humans , Lymphocytes/metabolism , Male , Microscopy, Electron, Transmission , Middle Aged , Phosphorylation , Rectal Neoplasms/genetics , Rectal Neoplasms/therapy
19.
Radiother Oncol ; 137: 45-54, 2019 08.
Article in English | MEDLINE | ID: mdl-31063923

ABSTRACT

BACKGROUND AND PURPOSE: High-precision radiotherapy is an effective treatment modality for tumors. Intensity-modulated radiotherapy techniques permit close shaping of high doses to tumors, however healthy organs outside the target volume are repeatedly exposed to low-dose radiation (LDR). The inherent vulnerability of hippocampal neurogenesis is likely the determining factor in radiation-induced neurocognitive dysfunctions. Using preclinical in-vivo models with daily LDR we attempted to precisely define the pathophysiology of radiation-induced neurotoxicity. MATERIAL AND METHODS: Genetically defined mouse strains with varying DNA repair capacities were exposed to fractionated LDR (5×/10×/15×/20×0.1 Gy) and dentate gyri from juvenile and adult mice were analyzed 72 h after last exposure and 1, 3, 6 months after 20 × 0.1 Gy. To examine the impact of LDR on neurogenesis, persistent DNA damage was assessed by quantifying 53BP1-foci within hippocampal neurons. Moreover, subpopulations of neuronal stem/progenitor cells were quantified and dendritic arborization of developing neurons were assessed. To unravel molecular mechanisms involved in radiation-induced neurotoxicity, hippocampi were analyzed using mass spectrometry-based proteomics and affected signaling networks were validated by immunoblotting. RESULTS: Radiation-induced DNA damage accumulation leads to progressive decline of hippocampal neurogenesis with decreased numbers of stem/progenitor cells and reduced complexities of dendritic architectures, clearly more pronounced in repair-deficient mice. Proteome analysis revealed substantial changes in neurotrophic signaling, with strong suppression directly after LDR and compensatory upregulation later on to promote functional recovery. CONCLUSION: Hippocampal neurogenesis is highly sensitive to repetitive LDR. Even low doses affect signaling networks within the neurogenic niche and interrupt the dynamic process of generation and maturation of neuronal stem/progenitor cells.


Subject(s)
DNA Damage/radiation effects , Dose Fractionation, Radiation , Hippocampus/radiation effects , Neurogenesis/radiation effects , Animals , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Stem Cells/radiation effects , Tumor Suppressor p53-Binding Protein 1/analysis
20.
Radiother Oncol ; 129(3): 600-610, 2018 12.
Article in English | MEDLINE | ID: mdl-30049456

ABSTRACT

BACKGROUND AND PURPOSE: High linear-energy-transfer (LET) irradiation (IR) is characterized by unique depth-dose distribution and advantageous biologic effectiveness compared to low-LET-IR, offering promising alternatives for radio-resistant tumors in clinical oncology. While low-LET-IR induces single DNA lesions such as double-strand breaks (DSBs), localized energy deposition along high-LET particle trajectories induces clustered DNA lesions that are more challenging to repair. During DNA damage response (DDR) 53BP1 and ATM are required for Kap1-dependent chromatin relaxation, thereby sustaining heterochromatic DSB repair. Here, spatiotemporal dynamics of chromatin restructuring were visualized during DDR after high-LET and low-LET-IR. MATERIAL AND METHODS: Human fibroblasts were irradiated with high-LET carbon/calcium ions or low-LET photons. At 0.1 h, 0.5 h, 5 h and 24 h post-IR fluorophore- and gold-labeled repair factors (53BP1, pATM, pKAP-1, pKu70) were visualized by immunofluorescence and transmission electron microscopy, to monitor formation and repair of DNA damage in chromatin ultrastructure. To track chromatin remodeling at damage sites, decondensed regions (DCR) were delineated based on local chromatin concentration densities. RESULTS: Low-LET-IR induced single DNA lesions throughout the nucleus, but nearly all DSBs were efficiently rejoined without visible chromatin decompaction. High-LET-IR induced clustered DNA damage and triggered profound changes in chromatin structure along particle trajectories. In DCR multiple heterochromatic DSBs exhibited delayed repair despite cooperative activity of 53BP1, pATM, pKap-1. These closely localized DSBs may disturb efficient repair and subsequent chromatin restoration, thereby affecting large-scale genome organization. CONCLUSION: Clustered damage concentrated in particle trajectories causes persistent rearrangements in chromatin architecture, which may affect structural and functional organization of cell nuclei.


Subject(s)
Chromatin/radiation effects , DNA Damage , Animals , Cells, Cultured , Chromatin/ultrastructure , DNA Breaks, Double-Stranded , DNA Repair , Humans , Ku Autoantigen/analysis , Linear Energy Transfer , Tumor Suppressor p53-Binding Protein 1/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...