Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
CRISPR J ; 7(3): 150-155, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695159

ABSTRACT

Treating human genetic conditions in vivo requires efficient delivery of the CRISPR gene editing machinery to the affected cells and organs. The gene editing field has seen clinical advances with ex vivo therapies and with in vivo delivery to the liver using lipid nanoparticle technology. Adeno-associated virus (AAV) serotypes have been discovered and engineered to deliver genetic material to nearly every organ in the body. However, the large size of most CRISPR-Cas systems limits packaging into the viral genome and reduces drug development flexibility and manufacturing efficiency. Here, we demonstrate efficient CRISPR gene editing using a miniature CRISPR-Cas12f system with expanded genome targeting packaged into AAV particles. We identified efficient guides for four therapeutic gene targets and encoded the guides and the Cas12f nuclease into a single AAV. We then demonstrate editing in multiple cell lines, patient fibroblasts, and primary hepatocytes. We then screened the cells for off-target editing, demonstrating the safety of the therapeutics. These results represent an important step in applying CRISPR editing to diverse genetic sequences and organs in the body.


Subject(s)
CRISPR-Cas Systems , Dependovirus , Gene Editing , Gene Editing/methods , Humans , Dependovirus/genetics , Hepatocytes/metabolism , Gene Transfer Techniques , Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Guide, CRISPR-Cas Systems/genetics , Genetic Vectors , Genetic Therapy/methods , HEK293 Cells , Cell Line , Fibroblasts/metabolism
2.
J Biol Chem ; 300(3): 105685, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272227

ABSTRACT

The precision of gene editing technology is critical to creating safe and effective therapies for treating human disease. While the programmability of CRISPR-Cas systems has allowed for rapid innovation of new gene editing techniques, the off-target activity of these enzymes has hampered clinical development for novel therapeutics. Here, we report the identification and characterization of a novel CRISPR-Cas12a enzyme from Acinetobacter indicus (AiCas12a). We engineer the nuclease (termed AiEvo2) for increased specificity, protospacer adjacent motif recognition, and efficacy on a variety of human clinical targets. AiEvo2 is highly precise and able to efficiently discriminate between normal and disease-causing alleles in Huntington's patient-derived cells by taking advantage of a single nucleotide polymorphism on the disease-associated allele. AiEvo2 efficiently edits several liver-associated target genes including PCSK9 and TTR when delivered to primary hepatocytes as mRNA encapsulated in a lipid nanoparticle. The enzyme also engineers an effective CD19 chimeric antigen receptor-T-cell therapy from primary human T cells using multiplexed simultaneous editing and chimeric antigen receptor insertion. To further ensure precise editing, we engineered an anti-CRISPR protein to selectively inhibit off-target gene editing while retaining therapeutic on-target editing. The engineered AiEvo2 nuclease coupled with a novel engineered anti-CRISPR protein represents a new way to control the fidelity of editing and improve the safety and efficacy of gene editing therapies.


Subject(s)
Gene Editing , Receptors, Chimeric Antigen , Humans , CRISPR-Cas Systems , Endonucleases/metabolism , Gene Editing/methods , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Receptors, Chimeric Antigen/metabolism , HEK293 Cells , Nucleotides/metabolism , Alleles , Nanoparticles
3.
PLoS Biol ; 21(12): e3002431, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38064533

ABSTRACT

Bacteriophages encode anti-CRISPR (Acr) proteins that inactivate CRISPR-Cas bacterial immune systems, allowing successful invasion, replication, and prophage integration. Acr proteins inhibit CRISPR-Cas systems using a wide variety of mechanisms. AcrIIA1 is encoded by numerous phages and plasmids, binds specifically to the Cas9 HNH domain, and was the first Acr discovered to inhibit SpyCas9. Here, we report the observation of AcrIIA1-induced degradation of SpyCas9 and SauCas9 in human cell culture, the first example of Acr-induced degradation of CRISPR-Cas nucleases in human cells. AcrIIA1-induced degradation of SpyCas9 is abolished by mutations in AcrIIA1 that break a direct physical interaction between the 2 proteins. Targeted Cas9 protein degradation by AcrIIA1 could modulate Cas9 nuclease activity in human therapies. The small size and specificity of AcrIIA1 could be used in a CRISPR-Cas proteolysis-targeting chimera (PROTAC), providing a tool for developing safe and precise gene editing applications.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , Humans , CRISPR-Cas Systems/genetics , Bacteriophages/genetics , CRISPR-Associated Protein 9/metabolism , Gene Editing , Lysogeny
4.
CRISPR J ; 6(4): 350-358, 2023 08.
Article in English | MEDLINE | ID: mdl-37267210

ABSTRACT

Small Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) effectors are key to developing gene editing therapies due to the packaging constraints of viral vectors. While Cas9 and Cas12a CRISPR-Cas effectors have advanced into select clinical applications, their size is prohibitive for efficient delivery of both nuclease and guide RNA in a single viral vector. Type V Cas12f effectors present a solution given their small size. In this study, we describe a novel set of miniature (<490AA) Cas12f nucleases that cleave double-stranded DNA in human cells. We determined their optimal trans-activating RNA empirically through rational modifications, which resulted in an optimal single guide RNA. We show that these nucleases have broad protospacer adjacent motif (PAM) preferences, allowing for expanded genome targeting. The unique characteristics of these novel nucleases add to the diversity of the miniature CRISPR-Cas toolbox while the expanded PAM allows for the editing of genomic locations that could not be accessed with existing Cas12f nucleases.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , CRISPR-Cas Systems/genetics , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , DNA/genetics , RNA , Endonucleases/genetics
5.
Bioconjug Chem ; 32(4): 746-754, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33689309

ABSTRACT

Although peptide motifs represent the majority of cleavable linkers used in clinical-stage antibody-drug conjugates (ADCs), the sequences are often sensitive to cleavage by extracellular enzymes, such as elastase, which leads to systemic release of the cytotoxic payload. This action reduces the therapeutic index by causing off-target toxicities that can be dose-limiting. For example, a common side-effect of ADCs made using peptide-cleavable linkers is myelosuppression, including neutropenia. Only a few reports describe methods for optimizing peptide linkers to maintain efficient and potent tumor payload delivery while enhancing circulating stability. Herein, we address these critical limitations through the development of a tandem-cleavage linker strategy, where two sequential enzymatic cleavage events mediate payload release. We prepared dipeptides that are protected from degradation in the circulation by a sterically encumbering glucuronide moiety. Upon ADC internalization and lysosomal degradation, the monosaccharide is removed and the exposed dipeptide is degraded, which liberates the attached payload inside the target cell. We used CD79b-targeted monomethyl auristatin E (MMAE) conjugates as our model system and compared the stability, efficacy, and tolerability of ADCs made with tandem-cleavage linkers to ADCs made using standard technology with the vedotin linker. The results, where rat studies showed dramatically improved tolerability in the hematopoietic compartment, highlight the role that linker stability plays in efficacy and tolerability and also offer a means of improving an ADC's therapeutic index for improved patient outcomes.


Subject(s)
Antineoplastic Agents/toxicity , CD79 Antigens/toxicity , Immunoconjugates/toxicity , Animals , Antineoplastic Agents/chemistry , CD79 Antigens/chemistry , Endocytosis , Female , Hydrolysis , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , In Vitro Techniques , Male , Mice , Mice, Inbred NOD , Mice, SCID , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays
6.
Mol Cancer Ther ; 19(9): 1866-1874, 2020 09.
Article in English | MEDLINE | ID: mdl-32651200

ABSTRACT

Trastuzumab and the related ADC, ado-trastuzumab emtansine (T-DM1), both target HER2-overexpressing cells. Together, these drugs have treatment indications in both early-stage and metastatic settings for HER2+ breast cancer. T-DM1 retains the antibody functionalities of trastuzumab and adds the potency of a cytotoxic maytansine payload. Interestingly, in the clinic, T-DM1 cannot always replace the use of trastuzumab plus chemotherapy administered together as single agents. We hypothesize that this failure may be due, in part, to the limited systemic exposure achieved by T-DM1 relative to trastuzumab because of toxicity-related dosing constraints on the ADC. We have developed a trastuzumab-based ADC site specifically conjugated to maytansine through a noncleavable linker. This construct, termed CAT-01-106, has a drug-to-antibody ratio (DAR) of 1.8, approximately half the average DAR of T-DM1, which comprises a mixture of antibodies variously conjugated with DARs ranging from 0 to 8. The high DAR species present in T-DM1 contribute to its toxicity and limit its clinical dose. CAT-01-106 showed superior in vivo efficacy compared with T-DM1 at equal payload dosing and was equally or better tolerated compared with T-DM1 at equal payload dosing up to 120 mg/kg in Sprague-Dawley rats and 60 mg/kg in cynomolgus monkeys. CAT-01-106 also showed improved pharmacokinetics in rats relative to T-DM1, with 40% higher ADC exposure levels. Together, the data suggest that CAT-01-106 may be sufficiently tolerable to enable clinical dosing at trastuzumab-equivalent exposure levels, combining the functions of both the antibody and the payload in one drug and potentially improving patient outcomes.


Subject(s)
Ado-Trastuzumab Emtansine/administration & dosage , Breast Neoplasms/drug therapy , Immunoconjugates/administration & dosage , Maytansine/chemistry , Trastuzumab/chemistry , Ado-Trastuzumab Emtansine/adverse effects , Ado-Trastuzumab Emtansine/pharmacokinetics , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Immunoconjugates/adverse effects , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Macaca fascicularis , Maximum Tolerated Dose , Rats , Rats, Sprague-Dawley , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology , Xenograft Model Antitumor Assays
7.
Bioconjug Chem ; 30(11): 2982-2988, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31671265

ABSTRACT

Antibody-drug conjugates (ADCs) are an established modality for the tissue-specific delivery of chemotherapeutics. However, due to the hydrophobic nature of many cytotoxic payloads, challenges remain in developing chemically stable ADCs with high drug loading. In previous studies, payload structure, unique stimuli-responsive chemistries, and PEGylated cross-linkers have been used to decrease ADC hydrophobicity. In this work, we investigate the effect of a new parameter, cross-linker sequence. A support-free synthesis of PEGylated, sequence-defined cross-linkers was developed and applied to the synthesis of three constitutionally isomeric ADCs containing PEG side chains and a monomethyl auristatin E payload. Placement of PEG side chains distally from the payload was found to yield an ADC with altered hydrophilicity, antigen binding, and in vitro potency. This work establishes a versatile method for synthesizing multifunctional cross-linkers and identifies cross-linker sequence as a new handle for modulating the performance of ADCs.


Subject(s)
Antibodies, Monoclonal/chemistry , Cell Proliferation , Cross-Linking Reagents/chemistry , Hydrophobic and Hydrophilic Interactions , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Oligopeptides/chemistry , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Tumor Cells, Cultured
8.
Antibodies (Basel) ; 8(4)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694242

ABSTRACT

A promising molecular target for aggressive cancers is the urokinase receptor (uPAR). A fully human, recombinant antibody that binds uPAR to form a stable complex that blocks uPA-uPAR interactions (2G10) and is internalized primarily through endocytosis showed efficacy in a mouse xenograft model of highly aggressive, triple negative breast cancer (TNBC). Antibody-drug conjugates (ADCs) of 2G10 were designed and produced bearing tubulin inhibitor payloads ligated through seven different linkers. Aldehyde tag technology was employed for linking, and either one or two tags were inserted into the antibody heavy chain, to produce site-specifically conjugated ADCs with drug-to-antibody ratios of either two or four. Both cleavable and non-cleavable linkers were combined with two different antimitotic toxins-MMAE (monomethylauristatin E) and maytansine. Nine different 2G10 ADCs were produced and tested for their ability to target uPAR in cell-based assays and a mouse model. The anti-uPAR ADC that resulted in tumor regression comprised an MMAE payload with a cathepsin B cleavable linker, 2G10-RED-244-MMAE. This work demonstrates in vitro activity of the 2G10-RED-244-MMAE in TNBC cell lines and validates uPAR as a therapeutic target for TNBC.

9.
J Am Soc Mass Spectrom ; 30(11): 2419-2429, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31429052

ABSTRACT

Middle-down mass spectrometry (MD MS) has emerged as a promising alternative to classical bottom-up approaches for protein characterization. Middle-level experiments after enzymatic digestion are routinely used for subunit analysis of monoclonal antibody (mAb)-related compounds, providing information on drug load distribution and average drug-to-antibody ratio (DAR). However, peptide mapping is still the gold standard for primary amino acid sequence assessment, post-translational modifications (PTM), and drug conjugation identification and localization. However, peptide mapping strategies can be challenging when dealing with more complex and heterogeneous mAb formats, like antibody-drug conjugates (ADCs). We report here, for the first time, MD MS analysis of a third-generation site-specific DAR4 ADC using different fragmentation techniques, including higher-energy collisional- (HCD), electron-transfer (ETD) dissociation and 213 nm ultraviolet photodissociation (UVPD). UVPD used as a standalone technique for ADC subunit analysis afforded, within the same liquid chromatography-MS/MS run, enhanced performance in terms of primary sequence coverage compared to HCD- or ETD-based MD approaches, and generated substantially more MS/MS fragments containing either drug conjugation or glycosylation site information, leading to confident drug/glycosylation site identification. In addition, our results highlight the complementarity of ETD and UVPD for both primary sequence validation and drug conjugation/glycosylation site assessment. Altogether, our results highlight the potential of UVPD for ADC MD MS analysis for drug conjugation/glycosylation site assessment, and indicate that MD MS strategies can improve structural characterization of empowered next-generation mAb-based formats, especially for PTMs and drug conjugation sites validation.


Subject(s)
Immunoconjugates/chemistry , Immunoconjugates/metabolism , Mass Spectrometry/methods , Peptide Mapping/methods , Binding Sites , Humans
10.
Nat Chem Biol ; 15(10): 949-958, 2019 10.
Article in English | MEDLINE | ID: mdl-31451760

ABSTRACT

Antibody-drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine-citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.


Subject(s)
CRISPR-Cas Systems , Genome-Wide Association Study , Immunoconjugates/toxicity , Maytansine/analogs & derivatives , N-Acetylneuraminic Acid/pharmacology , Trastuzumab/pharmacology , Ado-Trastuzumab Emtansine , Antineoplastic Agents, Immunological/pharmacology , Carrier Proteins , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Lysosomes , Maytansine/pharmacology
11.
Methods Mol Biol ; 2033: 131-147, 2019.
Article in English | MEDLINE | ID: mdl-31332752

ABSTRACT

As a critical feature of the next generation of antibody-drug conjugates (ADCs), site-specific bioconjugation approaches can help to optimize stability, pharmacokinetics, efficacy, and safety as well as improve manufacturing consistency. The SMARTag® technology platform offers a practical and efficient chemoenzymatic solution for site-specific protein modifications. A bioorthogonal aldehyde handle is introduced through the oxidation of a cysteine residue, embedded in a specific peptide sequence (CxPxR), to the aldehyde-bearing formylglycine (fGly). This enzymatic modification is carried out by the formylglycine-generating enzyme (FGE). The broad recognition of this short sequence by FGE within the context of heterologous proteins allows for the introduction of fGly residues at chosen sites in proteins expressed in prokaryotic and eukaryotic systems. The protocol presented here describes the methods for expressing fGly-containing antibodies in eukaryotic cells and subsequent site-specific conjugation with a payload-linker using aldehyde-specific Hydrazino-Iso-Pictet-Spengler (HIPS) chemistry.


Subject(s)
Immunoconjugates/genetics , Oxidoreductases Acting on Sulfur Group Donors/chemistry , Protein Engineering/methods , Proteins/chemistry , Aldehydes/chemistry , Glycine/analogs & derivatives , Humans , Immunoconjugates/chemistry , Oxidoreductases Acting on Sulfur Group Donors/genetics , Peptides/chemistry , Peptides/genetics , Protein Processing, Post-Translational/genetics , Proteins/genetics
12.
Methods Mol Biol ; 2012: 63-81, 2019.
Article in English | MEDLINE | ID: mdl-31161504

ABSTRACT

Use of the formylglycine generating enzyme (FGE)-a copper-dependent posttranslational protein modifier-represents a particularly elegant method taken directly from nature of introducing a unique amino acid into the larger context of a protein. Formylglycine (fGly) is a crucial component of the active site of sulfatases, where it directly participates in the breakdown of sulfate ester substrates. In the context of bioconjugation this aldehyde containing amino acid can be an invaluable reactive handle for the chemical conjugation of molecules. Here we describe a detailed method for generating formylglycine-containing proteins in a mammalian system developed specifically for the production of antibody-drug conjugates (ADCs) but applicable to a wide range of proteins.


Subject(s)
Oxidoreductases Acting on Sulfur Group Donors/chemistry , Proteins/chemistry , Staining and Labeling , Amino Acid Sequence , Amino Acids/chemistry , Consensus Sequence , Humans , Immunoconjugates/chemistry , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Protein Processing, Post-Translational , Structure-Activity Relationship
13.
Oncoimmunology ; 8(4): e1565859, 2019.
Article in English | MEDLINE | ID: mdl-30906660

ABSTRACT

Oncology treatment has been revolutionized by the introduction of immune checkpoint inhibitor drugs, which enable 20-40% of patients to generate anti-tumor immune responses. Combination treatment approaches with chemotherapeutic drugs may enable responses in the remaining patient cohorts. In this regard, a handful of drugs are promising due to their ability to induce immunogenic cell death in target cells. However, these agents are systemically delivered and indiscriminately cytotoxic to proliferating cells. By contrast, antibody-drug conjugates can selectively deliver a cytotoxic payload to a tumor, sparing most healthy cells. The ability of antibody-drug conjugates to induce immunogenic cell death in target cells has not yet been determined, although preclinical in vivo studies suggest this possibility. Here, we describe for the first time production of the in vitro hallmarks of immunogenic cell death - ecto-calreticulin and secreted ATP and HMGB1 protein - by cells in response to treatment with antibody-drug conjugates bearing a maytansine payload.

14.
MAbs ; 10(8): 1182-1189, 2018.
Article in English | MEDLINE | ID: mdl-30252630

ABSTRACT

The advantages of site-specific over stochastic bioconjugation technologies include homogeneity of product, minimal perturbation of protein structure/function, and - increasingly - the ability to perform structure activity relationship studies at the conjugate level. When selecting the optimal location for site-specific payload placement, many researchers turn to in silico modeling of protein structure to identify regions predicted to offer solvent-exposed conjugatable sites while conserving protein function. Here, using the aldehyde tag as our site-specific technology platform and human IgG1 antibody as our target protein, we demonstrate the power of taking an unbiased scanning approach instead. Scanning insertion of the human formylglycine generating enzyme (FGE) recognition sequence, LCTPSR, at each of the 436 positions in the light and heavy chain antibody constant regions followed by co-expression with FGE yielded a library of antibodies bearing an aldehyde functional group ready for conjugation. Each of the variants was expressed, purified, and conjugated to a cytotoxic payload using the Hydrazinyl Iso-Pictet-Spengler ligation to generate an antibody-drug conjugate (ADC), which was analyzed in terms of conjugatability (assessed by drug-to-antibody ratio, DAR) and percent aggregate. We searched for insertion sites that could generate manufacturable ADCs, defined as those variants yielding reasonable antibody titers, DARs of ≥ 1.3, and ≥ 95% monomeric species. Through this process, we discovered 58 tag insertion sites that met these metrics, including 14 sites in the light chain, a location that had proved refractory to the placement of manufacturable tag sites using in silico modeling/rational approaches.


Subject(s)
Aldehydes/immunology , Immunoconjugates/immunology , Immunoglobulin Constant Regions/immunology , Immunoglobulin G/immunology , Aldehydes/chemistry , Amino Acid Sequence , Binding Sites , Computer Simulation , Drug Compounding/methods , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/genetics , Glycine/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/genetics , Immunoglobulin Constant Regions/chemistry , Immunoglobulin Constant Regions/genetics , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Peptide Library , Protein Binding
15.
Methods Mol Biol ; 1728: 3-16, 2018.
Article in English | MEDLINE | ID: mdl-29404988

ABSTRACT

Enzymatic modification of proteins can generate uniquely reactive chemical functionality, enabling site-specific reactions on the protein surface. Formylglycine-generating enzyme (FGE) is one enzyme that can be exploited in this fashion. FGE binds its consensus sequence (CXPXR, known as the "aldehyde-tag") and converts the cysteine to a formylglycine (fGly). fGly-containing proteins contain a bioorthogonal aldehyde on their surface that can be modified selectively in the presence of the 20 canonical amino acids. Here, we describe protocols for the generation of a site-specifically modified protein, an antibody-drug conjugate (ADC), using aldehyde-tagging protocols and aldehyde-reactive conjugation chemistry.


Subject(s)
Enzymes/chemistry , Enzymes/metabolism , Glycine/analogs & derivatives , Immunoconjugates/chemistry , Aldehydes/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , CHO Cells , Catalysis , Cell Line , Chromatography, Liquid , Cricetulus , Cysteine/chemistry , Enzymes/genetics , Glycine/biosynthesis , Glycine/chemistry , Humans , Immunoconjugates/metabolism , Mutagenesis, Site-Directed , Substrate Specificity , Tandem Mass Spectrometry
16.
Mol Cancer Ther ; 17(1): 161-168, 2018 01.
Article in English | MEDLINE | ID: mdl-29142069

ABSTRACT

Hematologically derived tumors make up ∼10% of all newly diagnosed cancer cases in the United States. Of these, the non-Hodgkin lymphoma (NHL) designation describes a diverse group of cancers that collectively rank among the top 10 most commonly diagnosed cancers worldwide. Although long-term survival trends are improving, there remains a significant unmet clinical need for treatments to help patients with relapsed or refractory disease, one cause of which is drug efflux through upregulation of xenobiotic pumps, such as MDR1. CD22 is a clinically validated target for the treatment of NHL, but no anti-CD22 agents have yet been approved for this indication. Recent approval of an anti-CD22 antibody-drug conjugate (ADC) for the treatment of relapsed/refractory ALL supports the rationale for targeting this protein. An opportunity exists for a next-generation anti-CD22 antibody-drug conjugate (ADC) to address unmet medical needs in the relapsed/refractory NHL population. We describe a site-specifically conjugated antibody-drug conjugate, made using aldehyde tag technology, targeted against CD22 and bearing a noncleavable maytansine payload that is resistant to MDR1-mediated efflux. The construct was efficacious against CD22+ NHL xenografts and could be repeatedly dosed in cynomolgus monkeys at 60 mg/kg with no observed significantly adverse effects. Exposure to total ADC at these doses (as assessed by AUC0-inf) indicated that the exposure needed to achieve efficacy was below tolerable limits. Together, the data suggest that this drug has the potential to be used effectively in patients with CD22+ tumors that have developed MDR1-related resistance to prior therapies. Mol Cancer Ther; 17(1); 161-8. ©2017 AACR.


Subject(s)
Immunoconjugates/pharmacology , Maytansine/administration & dosage , Sialic Acid Binding Ig-like Lectin 2/immunology , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Animals , Drug Resistance, Neoplasm , Female , Humans , Macaca fascicularis , Male , Mice , Rats , Rats, Sprague-Dawley
17.
Antibodies (Basel) ; 7(4)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-31544890

ABSTRACT

We hypothesized that systematic liquid chromatography-tandem mass spectrometry investigations of an antibody-drug conjugate (ADC), its small and large molecular components, and surrogate small-molecule conjugates might comprise a simple and efficient approach for the extended characterization of ADCs. Furthermore, we envisioned that results from this work might allow us to assign specific composition changes in the ADC based on monoisotopic mass shifts of conjugatable modifications as detected in the surrogate small-molecule conjugates. We tested our hypothesis with a case study using an aldehyde-tag-based ADC conjugated to a noncleavable linker bearing a maytansine payload. Nearly quantitative bioconversion from cysteine to formylglycine was observed in the monoclonal antibody, and bioorthogonal conjugation was detected only on the formylglycine residues in the ADC. Using our method, both conjugatable and nonconjugatable modifications were discovered in the linker/payload; however, only conjugatable modifications were observed on the ADC. Based on these results, we anticipate that our approach to systematic mass spectrometric investigations can be successfully applied to other ADCs and therapeutic bioconjugates for investigational new drug (IND)-enabling extended characterization.

18.
BioDrugs ; 31(6): 521-531, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29119409

ABSTRACT

The antibody-drug conjugate (ADC) field is in a transitional period. Older approaches to conjugate composition and dosing regimens still dominate the ADC clinical pipeline, but preclinical work is driving a rapid evolution in how we strategize to improve efficacy and reduce toxicity towards better therapeutic outcomes. These advances are largely based upon a body of investigational studies that together offer a deeper understanding of the absorption, distribution, metabolism, and excretion (ADME) and drug metabolism and pharmacokinetics (DMPK) fates of both the intact conjugate and its small-molecule component. Knowing where the drug goes and how it is processed allows mechanistic connections to be drawn with commonly observed clinical toxicities. The field is also starting to consider ADC interactions with the immune system and potential synergistic therapeutic opportunities therein. In an indication of future directions for the field, antibody conjugates bearing non-cytotoxic small-molecule payloads are being developed to reduce side effects associated with treatment of chronic diseases. ADCs are not a magic bullet to cure disease. However, they will increasingly become valuable therapeutic tools to improve patient outcomes across a variety of indications.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Immunoconjugates/adverse effects , Immunoconjugates/therapeutic use , Immunotherapy/methods , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Chemical and Drug Induced Liver Injury/etiology , Dose-Response Relationship, Drug , Dose-Response Relationship, Immunologic , Humans , Immunity, Innate/drug effects , Immunoconjugates/chemistry
19.
J Am Chem Soc ; 139(29): 9867-9875, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28677396

ABSTRACT

Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize mechanical properties of biomolecules. Historically, accessibility relies upon the nonspecific adhesion of biomolecules to a surface and a cantilever and, for proteins, the integration of the target protein into a polyprotein. However, this assay results in a low yield of high-quality data, defined as the complete unfolding of the polyprotein. Additionally, nonspecific surface adhesion hinders studies of α-helical proteins, which unfold at low forces and low extensions. Here, we overcame these limitations by merging two developments: (i) a polyprotein with versatile, genetically encoded short peptide tags functionalized via a mechanically robust Hydrazino-Pictet-Spengler ligation and (ii) the efficient site-specific conjugation of biomolecules to PEG-coated surfaces. Heterobifunctional anchoring of this polyprotein construct and DNA via copper-free click chemistry to PEG-coated substrates and a strong but reversible streptavidin-biotin linkage to PEG-coated AFM tips enhanced data quality and throughput. For example, we achieved a 75-fold increase in the yield of high-quality data and repeatedly probed the same individual polyprotein to deduce its dynamic force spectrum in just 2 h. The broader utility of this polyprotein was demonstrated by measuring three diverse target proteins: an α-helical protein (calmodulin), a protein with internal cysteines (rubredoxin), and a computationally designed three-helix bundle (α3D). Indeed, at low loading rates, α3D represents the most mechanically labile protein yet characterized by AFM. Such efficient SMFS studies on a commercial AFM enable the rapid characterization of macromolecular folding over a broader range of proteins and a wider array of experimental conditions (pH, temperature, denaturants). Further, by integrating these enhancements with optical traps, we demonstrate how efficient bioconjugation to otherwise nonstick surfaces can benefit diverse single-molecule studies.


Subject(s)
Proteins/chemistry , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Protein Conformation, alpha-Helical , Temperature
20.
MAbs ; 9(5): 801-811, 2017 07.
Article in English | MEDLINE | ID: mdl-28406343

ABSTRACT

Antibody-drug conjugates (ADCs) have emerged as a family of compounds with promise as efficient immunotherapies. First-generation ADCs were generated mostly via reactions on either lysine side-chain amines or cysteine thiol groups after reduction of the interchain disulfide bonds, resulting in heterogeneous populations with a variable number of drug loads per antibody. To control the position and the number of drug loads, new conjugation strategies aiming at the generation of more homogeneous site-specific conjugates have been developed. We report here the first multi-level characterization of a site-specific ADC by state-of-the-art mass spectrometry (MS) methods, including native MS and its hyphenation to ion mobility (IM-MS). We demonstrate the versatility of native MS methodologies for site-specific ADC analysis, with the unique ability to provide several critical quality attributes within one single run, along with a direct snapshot of ADC homogeneity/heterogeneity without extensive data interpretation. The capabilities of native IM-MS to directly access site-specific ADC conformational information are also highlighted. Finally, the potential of these techniques for assessing an ADC's heterogeneity/homogeneity is illustrated by comparing the analytical characterization of a site-specific DAR4 ADC to that of first-generation ADCs. Altogether, our results highlight the compatibility, versatility, and benefits of native MS approaches for the analytical characterization of all types of ADCs, including site-specific conjugates. Thus, we envision integrating native MS and IM-MS approaches, even in their latest state-of-the-art forms, into workflows that benchmark bioconjugation strategies.


Subject(s)
Immunoconjugates/analysis , Mass Spectrometry/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL