Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(26): 18083-18094, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904115

ABSTRACT

Multiple RNA strands can interact in solution and assume a large variety of configurations dictated by their potential for base pairing. Although duplex formation from two complementary oligonucleotides has been studied in detail, we still lack a systematic characterization of the behavior of higher order complexes. Here, we focus on the thermodynamic and kinetic effects of an upstream oligonucleotide on the binding of a downstream oligonucleotide to a common template, as we vary the sequence and structure of the contact interface. We show that coaxial stacking in RNA is well correlated with but much more stabilizing than helix propagation over an analogous intact double helix step (median ΔΔG°37 °C ≈ 1.7 kcal/mol). Consequently, approximating coaxial stacking in RNA with the helix propagation term leads to large discrepancies between predictions and our experimentally determined melting temperatures, with an offset of ≈10 °C. Our kinetic study reveals that the hybridization of the downstream probe oligonucleotide is impaired (lower kon) by the presence of the upstream oligonucleotide, with the thermodynamic stabilization coming entirely from an extended lifetime (lower koff) of the bound downstream oligonucleotide, which can increase from seconds to months. Surprisingly, we show that the effect of nicks is dependent on the length of the stacking oligonucleotides, and we discuss the binding of ultrashort (1-4 nt) oligonucleotides that are relevant in the context of the origin of life. The thermodynamic and kinetic data obtained in this work allow for the prediction of the formation and stability of higher-order multistranded complexes.


Subject(s)
RNA , Thermodynamics , Kinetics , RNA/chemistry , Nucleic Acid Conformation , Oligonucleotides/chemistry , Base Pairing
2.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38464152

ABSTRACT

Coded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs. We used deep sequencing to identify RNAs that undergo highly efficient glycine aminoacylation followed by loop-closing ligation. The crystal structure of one such glycine-bridged RNA hairpin reveals a compact internally stabilized structure with the same eponymous T-loop architecture found in modern tRNA. We demonstrate that the T-loop assisted amino acid bridging of RNA oligonucleotides enables the rapid template-free assembly of a chimeric version of an aminoacyl-RNA synthetase ribozyme. We suggest that the primordial assembly of such chimeric ribozymes would have allowed the greater functionality of amino acids to contribute to enhanced ribozyme catalysis, providing a driving force for the evolution of sequence and amino acid specific aminoacyl-RNA synthetase enzymes prior to their role in protein synthesis.

3.
Biophys J ; 122(16): 3323-3339, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37469144

ABSTRACT

Hybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential noncanonical base-pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2-40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involve a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.


Subject(s)
DNA , Nucleic Acid Hybridization , RNA , Spectrum Analysis , DNA/chemistry , RNA/chemistry , Thermodynamics , Kinetics , Spectrum Analysis/methods , Molecular Dynamics Simulation
4.
J Am Chem Soc ; 145(29): 16142-16149, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37431761

ABSTRACT

A key challenge in origin-of-life research is the identification of plausible conditions that facilitate multiple steps along the pathway from chemistry to biology. The incompatibility of nucleotide activation chemistry and nonenzymatic template-directed RNA copying has hindered attempts to define such a pathway. Here, we show that adding heteroaromatic small molecules to the reaction network facilitates in situ nucleotide phosphate activation under conditions compatible with RNA copying, allowing both reactions to take place in the same mixture. This is achieved using Passerini-type phosphate activation in concert with nucleophilic organocatalysts that intercept high-energy reactive intermediates; this sequence ultimately affords 5',5'-imidazolium-bridged dinucleotides─the active species in template-directed RNA polymerization. Our results suggest that mixtures of prebiotically relevant heteroaromatic small molecules could have played a key role in the transition from chemistry to biology.


Subject(s)
Nucleotides , RNA , RNA/chemistry , Nucleotides/chemistry , Polymerization
5.
bioRxiv ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37090657

ABSTRACT

Hybridization of short nucleic acid segments (<4 nucleotides) to single-strand templates occurs as a critical intermediate in processes such as non-enzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood due to experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential non-canonical base pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2 to 40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involves a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.

6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35140183

ABSTRACT

Aminoacylated transfer RNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA world prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis. The nonenzymatic assembly of ribozymes from short RNA oligomers under realistic conditions remains a key challenge in demonstrating a plausible pathway from prebiotic chemistry to the RNA world. Here, we show that aminoacylated RNAs can undergo template-directed assembly into chimeric amino acid-RNA polymers that are active ribozymes. We demonstrate that such chimeric polymers can retain the enzymatic function of their all-RNA counterparts by generating chimeric hammerhead, RNA ligase, and aminoacyl transferase ribozymes. Amino acids with diverse side chains form linkages that are well tolerated within the RNA backbone and, in the case of an aminoacyl transferase, even in its catalytic center, potentially bringing novel functionalities to ribozyme catalysis. Our work suggests that aminoacylation chemistry may have played a role in primordial ribozyme assembly. Increasing the efficiency of this process provides an evolutionary rationale for the emergence of sequence and amino acid-specific aminoacyl-RNA synthetase ribozymes, which could then have generated the substrates for ribosomal protein synthesis.


Subject(s)
RNA, Catalytic/metabolism , Transfer RNA Aminoacylation/physiology , Base Sequence , DNA , Nucleic Acid Conformation , RNA, Transfer/genetics , RNA, Transfer/metabolism
7.
Biochemistry ; 60(6): 477-488, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33523633

ABSTRACT

Aminoacylated tRNAs are the substrates for ribosomal protein synthesis in all branches of life, implying an ancient origin for aminoacylation chemistry. In the 1970s, Orgel and colleagues reported potentially prebiotic routes to aminoacylated nucleotides and their RNA-templated condensation to form amino acid-bridged dinucleotides. However, it is unclear whether such reactions would have aided or impeded non-enzymatic RNA replication. Determining whether aminoacylated RNAs could have been advantageous in evolution prior to the emergence of protein synthesis remains a key challenge. We therefore tested the ability of aminoacylated RNA to participate in both templated primer extension and ligation reactions. We find that at low magnesium concentrations that favor fatty acid-based protocells, these reactions proceed orders of magnitude more rapidly than when initiated from the cis-diol of unmodified RNA. We further demonstrate that amino acid-bridged RNAs can act as templates in a subsequent round of copying. Our results suggest that aminoacylation facilitated non-enzymatic RNA replication, thus outlining a potentially primordial functional link between aminoacylation chemistry and RNA replication.


Subject(s)
Transfer RNA Aminoacylation/physiology , Aminoacylation/physiology , Dinucleoside Phosphates/metabolism , Nucleic Acid Conformation , Nucleotides/metabolism , RNA/metabolism , Templates, Genetic , Transfer RNA Aminoacylation/genetics
8.
J Am Chem Soc ; 141(45): 18104-18112, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31651170

ABSTRACT

Achieving multiple cycles of RNA replication within a model protocell would be a critical step toward demonstrating a path from prebiotic chemistry to cellular biology. Any model for early life based on an "RNA world" must account for RNA strand cleavage and hydrolysis, which would degrade primitive genetic information and lead to an accumulation of truncated, phosphate-terminated strands. We show here that cleavage of the phosphodiester backbone is not an end point for RNA replication. Instead, 3'-phosphate-terminated RNA strands can participate in template-directed copying reactions with activated ribonucleotide monomers. These reactions form a pyrophosphate linkage, the stability of which we have characterized in the context of RNA copying chemistry. The presence of free magnesium cations results in cleavage of the pyrophosphate bond within minutes. However, we found that the pyrophosphate bond is relatively stable within an RNA duplex and in the presence of chelated magnesium. We show that, under these conditions, pyrophosphate-linked RNA can act as a template for the polymerization of ribonucleotides into canonical 3'-5' phosphodiester-linked RNA. We suggest that primer extension of 3'-phosphate-terminated RNA followed by template-directed copying represents a plausible nonenzymatic pathway for the salvage and recovery of genetic information following strand cleavage.


Subject(s)
Diphosphates/chemistry , RNA/chemistry , Half-Life , Hydrolysis , Kinetics , RNA Cleavage
9.
Bioorg Med Chem Lett ; 29(11): 1370-1374, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30952593

ABSTRACT

In recent efforts, several C20' urea vinblastine analogues were discovered that displayed remarkable potency against vinblastine-sensitive tumor cell lines (IC50 50-75 pM), being roughly 100-fold more potent than vinblastine, and that exhibited decreased susceptibility to Pgp efflux-derived resistance in a vinblastine-resistant cell line. Their extraordinary activity indicate that it is not likely or even possible that their cellular functional activity is derived from stoichiometric occupancy of the intracellular tubulin binding sites. Rather, their potency indicates sub-stoichiometric or even catalytic occupancy of candidate binding sites may be sufficient to disrupt tubulin dynamics or microtubule assembly during mitosis. We detail efforts to delineate the underlying behavior responsible for the increased potency and show that the ultra-potent extended C20' ureas retain the mechanistic behavior of vinblastine, display enhanced affinity for tubulin and on-target activity approximately 100-fold both in vitro and in HeLa cells, but do not show evidence of catalytic disassembly of microtubulin. We also use the analogues to show that, in live interphase cells, the effects of the vinblastine class of drugs do not display a catastrophic effect on the microtubule skeleton, but rather a subtler insult to its dynamicity, acting as sub-stoichiometric drugs that inhibit normal microtubulin maturation and dynamics.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Microtubules/drug effects , Vinblastine/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Binding Sites/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , HeLa Cells , Humans , Microtubules/metabolism , Mitosis/drug effects , Molecular Structure , Structure-Activity Relationship , Vinblastine/analogs & derivatives , Vinblastine/chemistry
10.
Materials (Basel) ; 11(12)2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30486320

ABSTRACT

The bending analysis of thick and moderately thick functionally graded square and rectangular plates as well as plates on Winkler⁻Pasternak elastic foundation subjected to sinusoidal transverse load is presented in this paper. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. This paper presents the methodology of the application of the high order shear deformation theory based on the shape functions. A new shape function has been developed and the obtained results are compared to the results obtained with 13 different shape functions presented in the literature. Also, the validity and accuracy of the developed theory was verified by comparing those results with the results obtained using the third order shear deformation theory and 3D theories. In order to determine the procedure for the analysis and the prediction of behavior of functionally graded plates, the new program code in the software package MATLAB has been developed based on the theories studied in this paper. The effects of transversal shear deformation, side-to-thickness ratio, and volume fraction distributions are studied and appropriate conclusions are given.

11.
Bioorg Med Chem Lett ; 28(5): 863-865, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29439899

ABSTRACT

Clinical association studies have implicated high expression of class III ß-tubulin as a predictive factor for lower response rates and reduced overall survival in patients receiving tubulin binding drugs, most notably the taxanes. Because of the implications, we examined a series of key vinblastine analogs that emerged from our studies in functional cell growth inhibition assays for their sensitivity to high expression of class III ß-tubulin (human non-small cell lung cancer cell line A549 vs taxol-resistant A549-T24). Unlike taxol, vinblastine and a set of key analogs 3-10 did not exhibit any loss in sensitivity toward A549-T24. The results suggest that vinblastine and related analogs are not likely prone to resistance derived from high expression of class III ß-tubulin unlike the taxanes. Most significant are the results with 4-6, a subset of 20' amide vinblastine analogs. They match or exceed the potency of vinblastine and they display more potent activity against taxol-resistant A549-T24 than even wild type A549 cells (1.2-2-fold), complementing our prior observations that they also display no sensitivity to overexpression of Pgp (HCT116/VM46 vs HCT116) and are not subject to resistance derived from Pgp efflux.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Tubulin/biosynthesis , Vinblastine/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Vinblastine/chemistry
12.
J Med Chem ; 60(17): 7591-7604, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28857558

ABSTRACT

A series of 180 vinblastine 20' amides were prepared in three steps from commercially available starting materials, systematically exploring a typically inaccessible site in the molecule enlisting a powerful functionalization strategy. Clear structure-activity relationships and a structural model were developed in the studies which provided many such 20' amides that exhibit substantial and some even remarkable enhancements in potency, many that exhibit further improvements in activity against a Pgp overexpressing resistant cancer cell line, and an important subset of the vinblastine analogues that display little or no differential in activity against a matched pair of vinblastine sensitive and resistant (Pgp overexpressing) cell lines. The improvements in potency directly correlated with target tubulin binding affinity, and the reduction in differential functional activity against the sensitive and Pgp overexpressing resistant cell lines was found to correlate directly with an impact on Pgp-derived efflux.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Vinblastine/analogs & derivatives , Vinblastine/pharmacology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Drug Resistance, Multiple , Humans , Neoplasms/metabolism , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Vinblastine/chemical synthesis
13.
Bioorg Med Chem Lett ; 27(14): 3055-3059, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28551101

ABSTRACT

A key series of vinblastine analogs 7-13, which contain modifications to the C20' ethyl group, was prepared with use of two distinct synthetic approaches that provide modifications of the C20' side chain containing linear and cyclized alkyl groups or added functionalized substituents. Their examination revealed the unique nature of the improved properties of the synthetic vinblastine 6, offers insights into the origins of its increased tubulin binding affinity and 10-fold improved cell growth inhibition potency, and served to probe a small hydrophobic pocket anchoring the binding of vinblastine with tubulin. Especially noteworthy were the trends observed with substitution of the terminal carbon of the ethyl group that, with the exception of 9 (R=F vs H, equipotent), led to remarkably substantial reductions in activity (>10-fold): R=F (equipotent with H)>N3, CN (10-fold)>Me (50-fold)>Et (100-fold)>OH (inactive). This is in sharp contrast to the maintained (7) or enhanced activity (6) observed with its incorporation into a cyclic C20'/C15'-fused six-membered ring.


Subject(s)
Antineoplastic Agents/chemistry , Vinblastine/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Binding Sites , Crystallography, X-Ray , HCT116 Cells , Humans , Molecular Dynamics Simulation , Protein Binding/drug effects , Structure-Activity Relationship , Tubulin/chemistry , Tubulin/metabolism , Vinblastine/chemical synthesis , Vinblastine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...