Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786263

ABSTRACT

Resveratrol could be applied in wound healing therapies because of its antioxidant, anti-inflammatory and antibacterial effects. However, the main limitation of resveratrol is its low aqueous solubility. In this study, resveratrol was included in hydroxypropyl-ß-cyclodextrin complexes and further formulated in Pluronic F-127 hydrogels for wound treatment therapy. IR-spectroscopy and XRD analysis confirmed the successful incorporation of resveratrol into complexes. The wound-healing ability of these complexes was estimated by a scratch assay on fibroblasts, which showed a tendency for improvement of the effect of resveratrol after complexation. The antimicrobial activity of resveratrol in aqueous dispersion and in the complexes was evaluated on methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans strains. The results revealed a twofold decrease in the MIC and stronger inhibition of the metabolic activity of MRSA after treatment with resveratrol in the complexes compared to the suspended drug. Furthermore, the complexes were included in Pluronic hydrogel, which provided efficient drug release and appropriate viscoelastic properties. The formulated hydrogel showed excellent biocompatibility which was confirmed via skin irritation test on rabbits. In conclusion, Pluronic hydrogel containing resveratrol included in hydroxypropyl-ß-cyclodextrin complexes is a promising topical formulation for further studies directed at wound therapy.

2.
Gels ; 10(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38534574

ABSTRACT

Hydrogels are superior wound dressings because they can provide protection and hydration of the wound, as well as the controlled release of therapeutic substances to aid tissue regeneration and the healing process. Hydrogels obtained from natural precursors are preferred because of their low cost, biocompatibility, and biodegradability. We describe the synthesis of novel functional hydrogels based on two natural products-citric acid (CA) and pentane-1,2,5-triol (PT, a product from lignocellulose processing) and poly(ethylene glycol) (PEG-600)-via an environment friendly approach. The hydrogels were prepared via monomer crosslinking through a polycondensation reaction at an elevated temperature in the absence of any solvent. The reagents were blended at three different compositions with molar ratios of hydroxyl (from PT and PEG) to carboxyl (from CA) groups of 1:1, 1:1.4, and 1.4:1, respectively. The effect of the composition on the physicomechanical properties of materials was investigated. All hydrogels exhibited pH-sensitive behavior, while the swelling degree and elastic modulus were dependent on the composition of the polymer network. The proteolytic enzyme serratiopeptidase (SER) was loaded into a hydrogel via physical absorption as a model drug. The release profile of SER and the effects of the enzyme on healthy skin cells were assessed. The results showed that the hydrogel carrier could provide the complete release of the loaded enzyme.

3.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399401

ABSTRACT

In this study, doxorubicin was loaded in a chitosan-albumin nanogel with the aim of improving its stability and exploring the potential of the system in the treatment of skin cancer. Infrared spectroscopy and X-ray diffraction confirmed the encapsulation of the drug. Transmission electron microscopy revealed the spherical shape of the nanogel particles. The drug-loaded nanogel was characterized with a small diameter of 29 nm, narrow polydispersity (0.223) and positive zeta potential (+34 mV). The exposure of encapsulated doxorubicin to light (including UV irradiation and daylight) did not provoke any degradation, whereas the nonencapsulated drug was significantly degraded. In vitro studies on keratinocytes (HaCaT) and epidermoid squamous skin carcinoma cells (A-431) disclosed that the encapsulated doxorubicin was more cytotoxic on both cell lines than the pure drug was. More importantly, the cytotoxic concentration of encapsulated doxorubicin in carcinoma cells was approximately two times lower than that in keratinocytes, indicating that it would not affect them. Thus, the loading of doxorubicin into the developed chitosan-albumin nanogel definitely stabilized the drug against photodegradation and increased its antineoplastic effect on the skin cancer cell line.

4.
Polymers (Basel) ; 15(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765623

ABSTRACT

In this study, we report the development of a micellar system based on a poly(methacrylic acid)-b-poly(ε-caprolactone)-b-poly(methacrylic acid) triblock copolymer (PMAA16-b-PCL35-b-PMAA16) for the oral delivery of resveratrol. The micellar nanocarriers were designed to comprise a PCL core for solubilizing the poorly water-soluble drug and a hydrated PMAA corona with bioadhesive properties for providing better contact with the gastrointestinal mucosa. The micelles were first formed in an aqueous media via the solvent evaporation method and then loaded with resveratrol (72% encapsulation efficiency). Studies by transmission electron microscopy (TEM) and dynamic and electrophoretic light scattering (DLS and PALS) revealed a spherical shape, nanoscopic size (100 nm) and a negative surface charge (-30 mV) of the nanocarriers. Loading of the drug slightly decreased the hydrodynamic diameter (Dh) and increased the ƺ-potential of micelles. In vitro dissolution tests showed that 80% and 100% of resveratrol were released in 24 h in buffers with pH 1.2 and 6.8, respectively, whereas for the same time, not more than 10% of pure resveratrol was dissolved. A heat-induced albumin denaturation assay demonstrated the advantage of the aqueous micellar formulation of resveratrol, which possessed anti-inflammatory potential as high as that of the pure drug. Further, the micellar resveratrol (5 µM) exerted a strong protective effect and maintained viability of mucosa epithelial HT-29 cells in a co-cultural model, representing the production of inflammatory cytokines. For comparison, the pure resveratrol at the same concentration did not protect the damaged HT-29 cells at all. Thus, the present study revealed that the PMAA-b-PCL-b-PMAA copolymeric micelles might be considered appropriate nanocarriers for the oral delivery of resveratrol.

5.
Gels ; 9(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37367121

ABSTRACT

Nanogels are attractive drug delivery systems that provide high loading capacity for drug molecules, improve their stability, and increase cellular uptake. Natural antioxidants, especially polyphenols such as resveratrol, are distinguished by low aqueous solubility, which hinders therapeutic activity. Thus, in the present study, resveratrol was incorporated into nanogel particles, aiming to improve its protective effects in vitro. The nanogel was prepared from natural substances via esterification of citric acid and pentane-1,2,5-triol. High encapsulation efficiency (94.5%) was achieved by applying the solvent evaporation method. Dynamic light scattering, atomic force microscopy, and transmission electron microscopy revealed that the resveratrol-loaded nanogel particles were spherical in shape with nanoscopic dimensions (220 nm). In vitro release tests showed that a complete release of resveratrol was achieved for 24 h, whereas at the same time the non-encapsulated drug was poorly dissolved. The protective effect of the encapsulated resveratrol against oxidative stress in fibroblast and neuroblastoma cells was significantly stronger compared to the non-encapsulated drug. Similarly, the protection in a model of iron/ascorbic acid-induced lipid peroxidation on rat liver and brain microsomes was higher with the encapsulated resveratrol. In conclusion, embedding resveratrol in this newly developed nanogel improved its biopharmaceutical properties and protective effects in oxidative stress models.

6.
Pharmaceutics ; 15(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37111772

ABSTRACT

The anthracycline antibiotic doxorubicin is a well-known antitumour agent, however its cardiotoxicity is a significant obstacle to therapy. The aim of the present study was to improve the safety of doxorubicin through its simultaneous encapsulation with a cardioprotective agent (resveratrol) in Pluronic micelles. The formation and double-loading of the micelles was performed via the film hydration method. Infrared spectroscopy proved the successful incorporation of both drugs. X-ray diffraction analyses revealed that resveratrol was loaded in the core, whereas doxorubicin was included in the shell. The double-loaded micelles were characterised by a small diameter (26 nm) and narrow size distribution, which is beneficial for enhanced permeability and retention effects. The in vitro dissolution tests showed that the release of doxorubicin depended on the pH of the medium and was faster than that of resveratrol. In vitro studies on cardioblasts showed the opportunity to reduce the cytotoxicity of doxorubicin through the presence of resveratrol in double-loaded micelles. Higher cardioprotection was observed when the cells were treated with the double-loaded micelles compared with referent solutions with equal concentrations of both drugs. In parallel, treatments of L5178 lymphoma cells with the double-loaded micelles revealed that the cytotoxic effect of doxorubicin was enhanced. Thus, the study demonstrated that the simultaneous delivery of doxorubicin and resveratrol via the micellar system enabled the cytotoxicity of doxorubicin in lymphoma cells and lowered its cardiotoxicity in cardiac cells.

7.
Polymers (Basel) ; 14(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36080768

ABSTRACT

Nanogels (NGs) have attracted great attention because of their outstanding biocompatibility, biodegradability, very low toxicity, flexibility, and softness. NGs are characterized with a low and nonspecific interaction with blood proteins, meaning that they do not induce any immunological responses in the body. Due to these properties, NGs are considered promising candidates for pharmaceutical and biomedical application. In this work, we introduce the development of novel functional nanogel obtained from two naturally based products-citric acid (CA) and pentane-1,2,5-triol (PT). The nanogel was synthesized by precipitation esterification reaction of CA and PT in tetrahydrofuran using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and 4-(dimethylamino)pyridine (DMAP) catalyst system. Dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM) analyses revealed formation of spherical nanogel particles with a negative surface charge. Next, the nanogel was loaded with doxorubicin hydrochloride (DOX) by electrostatic interactions between carboxylic groups present in the nanogel and amino groups of DOX. The drug-loaded nanogel exhibited high encapsulation efficiency (EE~95%), and a bi-phasic release behavior. Embedding DOX into nanogel also stabilized the drug against photodegradation. The degradability of nanogel under acidic and neutral conditions with time was investigated as well.

SELECTION OF CITATIONS
SEARCH DETAIL