Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Front Mol Biosci ; 9: 1042231, 2022.
Article in English | MEDLINE | ID: mdl-36619172

ABSTRACT

Background: Assessing detailed metabolism in exercising persons minute-to-minute has not been possible. We developed a "drop-of-blood" platform to fulfill that need. Our study aimed not only to demonstrate the utility of our methodology, but also to give insights into unknown mechanisms and new directions. Methods: We developed a platform, based on gas chromatography and mass spectrometry, to assess metabolism from a blood-drop. We first observed a single volunteer who ran 13 km in 60 min. We particularly monitored relative perceived exertion (RPE). We observed that 2,3-bisphosphoglycerate peaked at RPE in this subject. We next expanded these findings to women and men volunteers who performed an RPE-based exercise protocol to RPE at Fi O 2 20.9% or Fi O 2 14.5% in random order. Results: At 6 km, our subject reached his maximum relative perceived exertion (RPE); however, he continued running, felt better, and finished his run. Lactate levels had stably increased by 2 km, ketoacids increased gradually until the run's end, while the hypoxia marker, 2,3 bisphosphoglycerate, peaked at maximum relative perceived exertion. In our normal volunteers, the changes in lactate, pyruvate, ß hydroxybutyrate and a hydroxybutyrate were not identical, but similar to our model proband runner. Conclusion: Glucose availability was not the limiting factor, as glucose availability increased towards exercise end in highly exerted subjects. Instead, the tricarboxylic acid→oxphos pathway, lactate clearance, and thus and the oxidative capacity appeared to be the defining elements in confronting maximal exertion. These ideas must be tested further in more definitive studies. Our preliminary work suggests that our single-drop methodology could be of great utility in studying exercise physiology.

3.
Physiol Rep ; 6(24): e13949, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30565412

ABSTRACT

The evidence that physical exercise lowers metabolic and cardiovascular risk is undisputed. Normobaric hypoxia training has been introduced to facilitate the effects of exercise. We tested the hypothesis that hypoxia training augments exercise-related effects. We randomized 23 men with metabolic-syndrome to single-blinded exercise at normoxia (FiO2 21%) or hypoxia (FiO2 15%). Six weeks endurance training on a treadmill, 3 days per week, over 60 min at 60% VO2 max was required. The study included the following: (1) metabolic phenotyping by indirect calorimetry and adipose and muscle tissue microdialysis to gain insight into effects on resting, postprandial, and exercise metabolism, (2) cardiac imaging, and (3) biopsies. Primary endpoint was the change in cardiorespiratory fitness; secondary endpoints were as follows: changes in body weight, waist circumference, blood pressure, cardiac dimensions, and adipose and muscle tissue metabolism and gene expression. Our subjects reduced waist circumference and improved several cardiovascular risk markers including blood pressure. However, these effects were similar in both training groups. Cardiac dimensions were not influenced. We focused on glucose metabolism. After an oral glucose load, adipose tissue metabolism was significantly shifted to a more lipolytic state under hypoxia, whereas muscle metabolism was similar under both conditions. Postprandial energy expenditure was significantly increased under hypoxia, whereas activity energy expenditure was improved under normoxia. Gene expression was not consistently influenced by FiO2 . Adipose tissue triglyceride lipase, leptin, and hypoxia-inducible factor-alpha expression were increased by normoxia but not hypoxia.


Subject(s)
Endurance Training/methods , Hypoxia/physiopathology , Metabolic Syndrome/therapy , Oxygen Consumption , Adipose Tissue/physiology , Blood Glucose/metabolism , Blood Pressure , Body Weight , Cardiorespiratory Fitness , Humans , Male , Metabolic Syndrome/physiopathology , Middle Aged , Muscle, Skeletal/physiology
4.
Hypertension ; 66(4): 800-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26283042

ABSTRACT

Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population.


Subject(s)
Brachydactyly/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , DNA/genetics , Hypertension/congenital , Mutation , Adolescent , Adult , Blood Pressure/physiology , Brachydactyly/diagnosis , Brachydactyly/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , DNA Mutational Analysis , Echocardiography, Doppler, Pulsed , Female , Humans , Hypertension/diagnosis , Hypertension/enzymology , Hypertension/genetics , Immunoblotting , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Young Adult
5.
J Clin Endocrinol Metab ; 95(4): 1634-43, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20130076

ABSTRACT

CONTEXT: Type 2 familial partial lipodystrophy (FPLD) is an autosomal-dominant lamin A/C-related disease associated with exercise intolerance, muscular pain, and insulin resistance. The symptoms may all be explained by defective metabolism; however, metabolism at the tissue level has not been investigated. OBJECTIVE: We hypothesized that in FPLD, insulin resistance and impaired aerobic exercise capacity are explained by a common underlying mechanism, presumably a muscular metabolic defect. PATIENTS AND METHODS: Carbohydrate and lipid metabolism was studied on 10 FPLD patients, one patient with limb-girdle muscular dystrophy (LGMD1B, a different lamin A/C disease), and 10 healthy control subjects before and during an oral glucose tolerance test by indirect calorimetry and im microdialysis. Muscle biopsies were taken for in vitro studies. RESULTS: We observed marked increased skeletal muscle fatty acid beta-oxidation rate in vitro and in vivo, even after glucose ingestion in FPLD patients. However, fatty acid oxidation was largely incomplete and accompanied by increased ketogenesis. The lipid oxidation abnormality was associated with impaired glucose disposition through reduction in glucose oxidation, rather than decreased cellular glucose uptake. A microarray showed down-regulation of complex I respiratory chain, glycolysis, and nuclear transport genes. Although not overtly insulin resistant, the LGMD1B patient showed similar metabolic derangements as the FPLD patients. CONCLUSIONS: Our study suggests imbalance between lipid oxidation and oxidative glucose metabolism in FPLD and LGMD1B patients. The observation suggests an intrinsic defect in skeletal muscle metabolism due to lamin A/C dysfunction. The metabolic FPLD phenotype likely results from this intrinsic defect combined with lipodystrophic "lipid pressure" due to decreased adipose tissue lipid storage capacity.


Subject(s)
Insulin Resistance/genetics , Lamin Type A/genetics , Lipid Metabolism/genetics , Lipodystrophy, Familial Partial/genetics , Lipodystrophy, Familial Partial/metabolism , Muscle, Skeletal/metabolism , Mutation/physiology , Adult , Blood Glucose/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , Cells, Cultured , Energy Metabolism/genetics , Energy Metabolism/physiology , Female , Glycogen/biosynthesis , Humans , Insulin/blood , Male , Middle Aged , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Mutation/genetics , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...