Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Mol Ther ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38379282

ABSTRACT

Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.

2.
Sci Rep ; 13(1): 7678, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169829

ABSTRACT

Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation resulting in premature termination. These inter-dependencies translate to drug-drug synergies, with therapeutic implications in cancer and other diseases.


Subject(s)
Neoplasms , Humans , Cell Cycle Checkpoints , Cell Cycle/genetics , Neoplasms/drug therapy , Protein-Arginine N-Methyltransferases/pharmacology
4.
Mol Ther Methods Clin Dev ; 17: 1026-1036, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32462051

ABSTRACT

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by expansion of GAA repeats in intron 1 of the frataxin (FXN) gene, leading to significant decreased expression of frataxin, a mitochondrial iron-binding protein. We previously reported that syngeneic hematopoietic stem and progenitor cell (HSPC) transplantation prevented neurodegeneration in the FRDA mouse model YG8R. We showed that the mechanism of rescue was mediated by the transfer of the functional frataxin from HSPC-derived microglia/macrophage cells to neurons/myocytes. In this study, we report the first step toward an autologous HSPC transplantation using the CRISPR-Cas9 system for FRDA. We first identified a pair of CRISPR RNAs (crRNAs) that efficiently removes the GAA expansions in human FRDA lymphoblasts, restoring the non-pathologic level of frataxin expression and normalizing mitochondrial activity. We also optimized the gene-editing approach in HSPCs isolated from healthy and FRDA patients' peripheral blood and demonstrated normal hematopoiesis of gene-edited cells in vitro and in vivo. The procedure did not induce cellular toxic effect or major off-target events, but a p53-mediated cell proliferation delay was observed in the gene-edited cells. This study provides the foundation for the clinical translation of autologous transplantation of gene-corrected HSPCs for FRDA.

SELECTION OF CITATIONS
SEARCH DETAIL
...