Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 15(7): 1835-1841, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32293864

ABSTRACT

The first asymmetric total synthesis of three structures proposed for mycobacterial diacyl trehaloses, DAT1, DAT2, and DAT3 is reported. The presence of two of these glycolipids, DAT1 and DAT3, within different strains of pathogenic M. tuberculosis was confirmed, and it was shown that their abundance varies significantly. In mass spectrometry, synthetic DAT2 possessed almost identical fragmentation patterns to presumptive DAT2 from Mycobacterium tuberculosis H37Rv, but did not coelute by HPLC, raising questions as the precise relationship of the synthetic and natural materials. The synthetic DATs were examined as agonists for signaling by the C-type lectin, Mincle. The small differences in the chemical structure of the lipidic parts of DAT1, DAT2, and DAT3 led to drastic differences of Mincle binding and activation, with DAT3 showing similar potency as the known Mincle agonist trehalose dimycolate (TDM). In the future, DAT3 could serve as basis for the design of vaccine adjuvants with simplified chemical structure.


Subject(s)
Glycolipids/pharmacology , Lectins, C-Type/agonists , Membrane Proteins/agonists , Receptors, Immunologic/agonists , Trehalose/analogs & derivatives , Trehalose/pharmacology , Animals , Chromatography, Liquid , Glycolipids/chemical synthesis , Glycolipids/isolation & purification , Humans , Mass Spectrometry , Mice , Molecular Structure , Mycobacterium tuberculosis/chemistry , Protein Binding , Stereoisomerism , Trehalose/isolation & purification
2.
Nat Chem Biol ; 15(9): 889-899, 2019 09.
Article in English | MEDLINE | ID: mdl-31427817

ABSTRACT

Mycobacterium tuberculosis (Mtb) is the world's most deadly pathogen. Unlike less virulent mycobacteria, Mtb produces 1-tuberculosinyladenosine (1-TbAd), an unusual terpene nucleoside of unknown function. In the present study 1-TbAd has been shown to be a naturally evolved phagolysosome disruptor. 1-TbAd is highly prevalent among patient-derived Mtb strains, where it is among the most abundant lipids produced. Synthesis of TbAd analogs and their testing in cells demonstrate that their biological action is dependent on lipid linkage to the 1-position of adenosine, which creates a strong conjugate base. Furthermore, C20 lipid moieties confer passage through membranes. 1-TbAd selectively accumulates in acidic compartments, where it neutralizes the pH and swells lysosomes, obliterating their multilamellar structure. During macrophage infection, a 1-TbAd biosynthesis gene (Rv3378c) confers marked phagosomal swelling and intraphagosomal inclusions, demonstrating an essential role in regulating the Mtb cellular microenvironment. Although macrophages kill intracellular bacteria through phagosome acidification, Mtb coats itself abundantly with antacid.


Subject(s)
Antacids/metabolism , Lipids/biosynthesis , Lipids/chemistry , Mycobacterium tuberculosis/metabolism , Phagosomes/metabolism , Animals , Gene Expression Regulation, Bacterial , Humans , Hydrogen-Ion Concentration , Lysosomes , Macrophages/metabolism , Mice , Molecular Structure , Mycobacterium kansasii/genetics , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...