Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38925866

ABSTRACT

In Caenorhabditis elegans, inter-cellular transport of the small non-coding RNA causing systemic RNAi is mediated by the transmembrane protein SID1, encoded by the sid1 gene in the systemic RNAi defective (sid) loci. SID1 shares structural and sequence similarity with cholesterol uptake protein 1 (CHUP1) and is classified as a member of the ChUP family. Although systemic RNAi is not an evolutionarily conserved process, the sid gene products are found across the animal kingdom, suggesting the existence of other novel gene regulatory mechanisms mediated by small non-coding RNAs. Human homologs of sid gene products-hSIDT1 and hSIDT2-mediate contact-dependent lipophilic small non-coding dsRNA transport. Here, we report the structure of recombinant human SIDT1. We find that the extra-cytosolic domain of hSIDT1 adopts a double jelly roll fold, and the transmembrane domain exists as two modules-a flexible lipid binding domain and a rigid transmembrane domain core. Our structural analyses provide insights into the inherent conformational dynamics within the lipid binding domain in ChUP family members.


Subject(s)
Membrane Proteins , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Protein Binding , Protein Domains/genetics , Models, Molecular , Protein Conformation , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Animals , Amino Acid Sequence , Binding Sites , Lipids/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , RNA Interference
2.
ChemMedChem ; 19(12): e202300343, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38523074

ABSTRACT

A novel macrocyclic inhibitor of mutant EGFR (BI-4020) has shown promise in pre-clinical studies of T790M and C797S drug-resistant non-small cell lung cancer. To better understand the molecular basis for BI-4020 selectivity and potency, we have carried out biochemical activity assays and structural analysis with X-ray crystallography. Biochemical potencies agree with previous studies indicating that BI-4020 is uniquely potent against drug-resistant L858R/T790M and L858R/T790M/C797S variants. X-ray structures with wild-type (2.4 Å) and T790M/V948R (3.1 Å) EGFR kinase domains show that BI-4020 is likely rendered selective due to interactions with the kinase domain hinge region as well as T790M, akin to Osimertinib. Additionally, BI-4020 is also rendered more potent due to its constrained macrocycle geometry as well as additional H-bonds to conserved K745 and T845 residues in both active and inactive conformations. These findings taken together show how this novel macrocyclic inhibitor is both highly potent and selective for mutant EGFR in a reversible mechanism and motivate structure-inspired approaches to developing targeted therapies in medicinal oncology.


Subject(s)
ErbB Receptors , Macrocyclic Compounds , Protein Kinase Inhibitors , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Humans , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Crystallography, X-Ray , Structure-Activity Relationship , Molecular Structure , Models, Molecular , Binding Sites , Dose-Response Relationship, Drug , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis
3.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38187772

ABSTRACT

In C. elegans, inter-cellular transport of the small non-coding RNA causing systemic RNA interference (RNAi) is mediated by the transmembrane protein SID1, encoded by the sid1 gene in the systemic RNA interference-defective (sid) loci. SID1 shares structural and sequence similarity with cholesterol uptake protein 1 (CHUP1) and is classified as a member of the cholesterol uptake family (ChUP). Although systemic RNAi is not an evolutionarily conserved process, the sid gene products are found across the animal kingdom, suggesting the existence of other novel gene regulatory mechanisms mediated by small non-coding RNAs. Human homologs of sid gene products - hSIDT1 and hSIDT2 - mediate contact-dependent lipophilic small non-coding dsRNA transport. Here, we report the structure of recombinant human SIDT1. We find that the extra-cytosolic domain (ECD) of hSIDT1 adopts a double jelly roll fold, and the transmembrane domain (TMD) exists as two modules - a flexible lipid binding domain (LBD) and a rigid TMD core. Our structural analyses provide insights into the inherent conformational dynamics within the lipid binding domain in cholesterol uptake (ChUP) family members.

4.
J Med Chem ; 65(23): 15679-15697, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36384036

ABSTRACT

Activating mutations in the epidermal growth factor receptor (EGFR) are frequent oncogenic drivers of non-small-cell lung cancer (NSCLC). The most frequent alterations in EGFR are short in-frame deletions in exon 19 (Del19) and the missense mutation L858R, which both lead to increased activity and sensitization of NSCLC to EGFR inhibition. The first approved EGFR inhibitors used for first-line treatment of NSCLC, gefitinib and erlotinib, are quinazoline-based. However, both inhibitors have several known off-targets, and they also potently inhibit wild-type (WT) EGFR, resulting in side effects. Here, we applied a macrocyclic strategy on a quinazoline-based scaffold as a proof-of-concept study with the goal of increasing kinome-wide selectivity of this privileged inhibitor scaffold. Kinome-wide screens and SAR studies yielded 3f, a potent inhibitor for the most common EGFR mutation (EGFR Del19: 119 nM) with selectivity against the WT receptor (EGFR: >10 µM) and the kinome.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Quinazolines/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Proof of Concept Study , ErbB Receptors/genetics
5.
Nat Commun ; 13(1): 2530, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534503

ABSTRACT

Lung cancer is frequently caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric EGFR inhibitors offer promise as the next generation of therapeutics, as they are unaffected by common ATP-site resistance mutations and synergize with the drug osimertinib. Here, we examine combinations of ATP-competitive and allosteric inhibitors to better understand the molecular basis for synergy. We identify a subset of irreversible EGFR inhibitors that display positive binding cooperativity and synergy with the allosteric inhibitor JBJ-04-125-02 in several EGFR variants. Structural analysis of these complexes reveals conformational changes occur mainly in the phosphate-binding loop (P-loop). Mutation of F723 in the P-loop reduces cooperative binding and synergy, supporting a mechanism in which F723-mediated contacts between the P-loop and the allosteric inhibitor are critical for synergy. These structural and mechanistic insights will aid in the identification and development of additional inhibitor combinations with potential clinical value.


Subject(s)
Drug Resistance, Neoplasm , Lung Neoplasms , Adenosine Triphosphate , Aniline Compounds , Drug Resistance, Neoplasm/genetics , ErbB Receptors/metabolism , Humans , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
6.
Nat Cancer ; 3(4): 402-417, 2022 04.
Article in English | MEDLINE | ID: mdl-35422503

ABSTRACT

Epidermal growth factor receptor (EGFR) therapy using small-molecule tyrosine kinase inhibitors (TKIs) is initially efficacious in patients with EGFR-mutant lung cancer, although drug resistance eventually develops. Allosteric EGFR inhibitors, which bind to a different EGFR site than existing ATP-competitive EGFR TKIs, have been developed as a strategy to overcome therapy-resistant EGFR mutations. Here we identify and characterize JBJ-09-063, a mutant-selective allosteric EGFR inhibitor that is effective across EGFR TKI-sensitive and resistant models, including those with EGFR T790M and C797S mutations. We further uncover that EGFR homo- or heterodimerization with other ERBB family members, as well as the EGFR L747S mutation, confers resistance to JBJ-09-063, but not to ATP-competitive EGFR TKIs. Overall, our studies highlight the potential clinical utility of JBJ-09-063 as a single agent or in combination with EGFR TKIs to define more effective strategies to treat EGFR-mutant lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenosine Triphosphate/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology
7.
J Med Chem ; 65(2): 1370-1383, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34668706

ABSTRACT

Inhibitors targeting the epidermal growth factor receptor (EGFR) are an effective therapy for patients with non-small cell lung cancer harboring drug-sensitive activating mutations in the EGFR kinase domain. Drug resistance due to treatment-acquired mutations has motivated the development of successive generations of inhibitors that bind in the ATP site. The third-generation agent osimertinib is now a first-line treatment for this disease. Recently, allosteric inhibitors have been developed to overcome drug-resistant mutations that confer a resistance to osimertinib. Here, we present the structure-guided design and synthesis of a mutant-selective lead compound, which consists of a pyridinyl imidazole-fused benzylisoindolinedione scaffold that simultaneously occupies the orthosteric and allosteric sites. The compound potently inhibits enzymatic activity in L858R/T790M/C797S mutant EGFR (4.9 nM), with a significantly lower activity for wild-type EGFR (47 nM). Additionally, this compound achieves modest cetuximab-independent and mutant-selective cellular efficacies on the L858R (1.2 µM) and L858R/T790M (4.4 µM) variants.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Design , Drug Resistance, Neoplasm/drug effects , Imidazoles/chemistry , Mutation , Protein Kinase Inhibitors/pharmacology , Acrylamides/pharmacology , Allosteric Site , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...