Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
2.
Pharmaceutics ; 15(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111801

ABSTRACT

The effects of two anticancer active copper(II) mixed-ligand complexes of the type [Cu(qui)(mphen)]Y·H2O, where Hqui = 2-phenyl-3-hydroxy- 1H-quinolin-4-one, mphen = bathophenanthroline, and Y = NO3 (complex 1) or BF4 (complex 2) on the activities of different isoenzymes of cytochrome P450 (CYP) have been evaluated. The screening revealed significant inhibitory effects of the complexes on CYP3A4/5 (IC50 values were 2.46 and 4.88 µM), CYP2C9 (IC50 values were 16.34 and 37.25 µM), and CYP2C19 (IC50 values were 61.21 and 77.07 µM). Further, the analysis of mechanisms of action uncovered a non-competitive type of inhibition for both the studied compounds. Consequent studies of pharmacokinetic properties proved good stability of both the complexes in phosphate buffer saline (>96% stability) and human plasma (>91% stability) after 2 h of incubation. Both compounds are moderately metabolised by human liver microsomes (<30% after 1 h of incubation), and over 90% of the complexes bind to plasma proteins. The obtained results showed the potential of complexes 1 and 2 to interact with major metabolic pathways of drugs and, as a consequence of this finding, their apparent incompatibility in combination therapy with most chemotherapeutic agents.

3.
Nanomaterials (Basel) ; 12(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889596

ABSTRACT

Chemotherapeutics such as platinum-based drugs are commonly used to treat several cancer types, but unfortunately, their use is limited by several side effects, such as high degradation of the drug before entering the cells, off-target organ toxicity and development of drug resistance. An interesting strategy to overcome such limitations is the development of nanocarriers that could enhance cellular accumulation in target cells in addition to decreasing associated drug toxicity in normal cells. Here, we aim to prepare and characterize a graphene-oxide-based 2D nanoplatform functionalised using highly branched, eight-arm polyethylene-glycol, which, owing to its high number of available functional groups, offers considerable loading capacity over its linear modalities and represents a highly potent nanodelivery platform as a versatile system in cancer therapy. The obtained results show that the GO@PEG carrier allows for the use of lower amounts of Pt drug compared to a Pt-free complex while achieving similar effects. The nanoplatform accomplishes very good cellular proliferation inhibition in osteosarcoma, which is strictly related to increased cellular uptake. This enhanced cellular internalization is also observed in glioblastoma, although it is less pronounced due to differences in metabolism compared to osteosarcoma. The proposed GO@PEG nanoplatform is also promising for the inhibition of migration, especially in highly invasive breast carcinoma (i.e., MDA-MB-231 cell line), neutralizing the metastatic process. The GO@PEG nanoplatform thus represents an interesting tool in cancer treatment that can be specifically tailored to target different cancers.

4.
Adv Mater ; 33(4): e2004560, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33274794

ABSTRACT

In this work, the covalent attachment of an amine functionalized metal-organic framework (UiO-66-NH2  = Zr6 O4 (OH)4 (bdc-NH2 )6 ; bdc-NH2  = 2-amino-1,4-benzenedicarboxylate) (UiO-Universitetet i Oslo) to the basal-plane of carboxylate functionalized graphene (graphene acid = GA) via amide bonds is reported. The resultant GA@UiO-66-NH2 hybrid displayed a large specific surface area, hierarchical pores and an interconnected conductive network. The electrochemical characterizations demonstrated that the hybrid GA@UiO-66-NH2 acts as an effective charge storing material with a capacitance of up to 651 F g-1 , significantly higher than traditional graphene-based materials. The results suggest that the amide linkage plays a key role in the formation of a π-conjugated structure, which facilitates charge transfer and consequently offers good capacitance and cycling stability. Furthermore, to realize the practical feasibility, an asymmetric supercapacitor using a GA@UiO-66-NH2 positive electrode with Ti3 C2 TX MXene as the opposing electrode has been constructed. The cell is able to deliver a power density of up to 16 kW kg-1 and an energy density of up to 73 Wh kg-1 , which are comparable to several commercial devices such as Pb-acid and Ni/MH batteries. Under an intermediate level of loading, the device retained 88% of its initial capacitance after 10 000 cycles.

5.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207792

ABSTRACT

Nanocomposites obtained by the decoration of graphene-based materials with silver nanoparticles (AgNPs) have received increasing attention owing to their antimicrobial activity. However, the complex synthetic methods for their preparation have limited practical applications. This study aims to synthesize novel NanoHybrid Systems based on graphene, polymer, and AgNPs (namely, NanoHy-GPS) through an easy microwave irradiation approach free of reductants and surfactants. The polymer plays a crucial role, as it assures the coating layer/substrate compatibility making the platform easily adaptable for a specific substrate. AgNPs' loading (from 5% to 87%) can be tuned by the amount of Silver salt used during the microwave-assisted reaction, obtaining spherical AgNPs with average sizes of 5-12 nm homogeneously distributed on a polymer-graphene nanosystem. Interestingly, microwave irradiation partially restored the graphene sp2 network without damage of ester bonds. The structure, morphology, and chemical composition of NanoHy-GPS and its subunits were characterized by means of UV-vis spectroscopy, thermal analysis, differential light scattering (DLS), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray analysis (EDX), Atomic Force Microscopy (AFM), and High-Resolution Transmission Electron Microscopy (HRTEM) techniques. A preliminary qualitative empirical assay against the typical bacterial load on common hand-contacted surfaces has been performed to assess the antibacterial properties of NanoHy-GPS, evidencing a significative reduction of bacterial colonies spreading.

6.
Nanomaterials (Basel) ; 10(9)2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32878342

ABSTRACT

Supercapacitors offer a promising alternative to batteries, especially due to their excellent power density and fast charging rate capability. However, the cycling stability and material synthesis reproducibility need to be significantly improved to enhance the reliability and durability of supercapacitors in practical applications. Graphene acid (GA) is a conductive graphene derivative dispersible in water that can be prepared on a large scale from fluorographene. Here, we report a synthesis protocol with high reproducibility for preparing GA. The charging/discharging rate stability and cycling stability of GA were tested in a two-electrode cell with a sulfuric acid electrolyte. The rate stability test revealed that GA could be repeatedly measured at current densities ranging from 1 to 20 A g-1 without any capacitance loss. The cycling stability experiment showed that even after 60,000 cycles, the material kept 95.3% of its specific capacitance at a high current density of 3 A g-1. The findings suggested that covalent graphene derivatives are lightweight electrode materials suitable for developing supercapacitors with extremely high durability.

7.
Analyst ; 145(23): 7701-7708, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-32986059

ABSTRACT

Graphene-enhanced Raman scattering (GERS) has attracted increasing attention from many scientists in recent years as a novel and potentially strong analytical technique since its discovery in 2010. GERS combines the ultra-high sensitivity and spectral analysis of the structural properties of many molecules found in surface-enhanced Raman scattering (SERS) and graphene simple sample processing and excellent uniformity. This facilitates a fast and very sensitive analysis of a wide range of analytes. Here, we present a new method for amino acid analysis based on the combination of drop coating deposition Raman (DCDR) and GERS. The potential of the method was evaluated in the analyses of Trp, Leu, Phe, and DOPA. Achievable limits of detection for all the studied amino acids are in tens of ng mL-1.


Subject(s)
Graphite , Spectrum Analysis, Raman , Amino Acids
8.
Anal Chim Acta ; 1129: 69-75, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32891392

ABSTRACT

Discrimination of enantiomers poses a scientific challenge as the chemical and physical properties of enantiomers are nearly identical. The chiral analysis is usually performed by separation techniques, including chromatography, electrophoresis, or optical instrumentation based on an interaction of the analyzed sample with a polarized beam of light. Here we present a novel method for a chiral screening based on a combination of the black phosphorus@Graphene nanocomposite and Raman spectroscopy. The nanocomposite allows to enhance the Raman signal with factors higher than 100 asymmetrically and provide altered signals for mixtures containing varying enantiomeric ratios of target compounds. Tryptophan, Phenylalanine, DOPA, Isoleucine, and Leucine were selected as model compounds; the method allows us to discriminate between mixtures with 10, 25, 50, 75, and 100% enantiomeric purity.


Subject(s)
Graphite , Spectrum Analysis, Raman , Amines , Amino Acids , Stereoisomerism
9.
Chemistry ; 26(52): 12075-12080, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32293757

ABSTRACT

Terrestrial volcanism has been one of the dominant geological forces shaping our planet since its earliest existence. Its associated phenomena, like atmospheric lightning and hydrothermal activity, provide a rich energy reservoir for chemical syntheses. Based on our laboratory simulations, we propose that on the early Earth volcanic activity inevitably led to a remarkable production of formic acid through various independent reaction channels. Large-scale availability of atmospheric formic acid supports the idea of the high-temperature accumulation of formamide in this primordial environment.

10.
Nanoscale ; 11(44): 21364-21375, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31674615

ABSTRACT

There is an urgent need for a simple and up-scalable method for the preparation of supercapacitor electrode materials due to increasing global energy consumption worldwide. We have discovered that fluorographene exhibits great potential for the development of new kinds of supercapacitors aimed at practical applications. We have shown that time control of isothermal reduction of fluorographite at 450 °C under a hydrogen atmosphere led to the fine-tuning of fluorine content and electronic properties of the resulting fluorographene derivatives. Charge transfer resistances (Rct) of the thermally reduced fluorographenes (TRFGs) were decreased with respect to the pristine fluorographene; however, the Rctvs. time-of-reduction plot showed a v-shaped profile. The specific capacitance vs. time-of-reduction of TRFG followed the v-shaped trend, which could be the result of the decreasing content of sp3 carbons and increasing content of structural defects. An optimized material exhibited values of specific capacitance up to 539 F g-1 recorded at a current density of 0.25 A g-1 and excellent cycling durability with 100% specific capacitance retention after 1500 cycles in a three-electrode configuration and 96.7% of specific capacitance after 30 000 cycles in a two-electrode setup.

11.
Adv Sci (Weinh) ; 5(11): 1801029, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30479932

ABSTRACT

2D layered materials, including metal-di-chalcogenides and transition metal layered double hydroxides, among others, are intensively studied because of new properties that emerge from their 2D confinement, which are attractive for advanced applications. Herein, 2D cobalt ion (Co2+) and benzimidazole (bIm) based zeolite-imidazole framework nanosheets, ZIF-9(III), are reported as exceptionally efficient electrocatalysts for the oxygen evolution reaction (OER). Specifically, liquid-phase ultrasonication is applied to exfoliate a [Co4(bIm)16] zeolite-imidazole framework (ZIF), named as ZIF-9(III) phase, into nanoscale sheets. ZIF-9(III) is selectively prepared through simple mechanical grinding of cobalt nitrate and benzimidazole in the presence of a small amount of ethanol. The resultant exfoliated nanosheets exhibit significantly higher OER activity in alkaline conditions than the corresponding bulk phases ZIF-9 and ZIF-9(III). The electrochemical and physicochemical characterization data support the assignment of the OER activity of the exfoliated nanosheet derived material to nitrogen coordinated cobalt oxyhydroxide N4CoOOH sites, following a mechanism known for Co-porphyrin and related systems. Thus, exfoliated 2D nanosheets hold promise as potential alternatives to commercial noble metal electrocatalysts for the OER.

12.
Anal Bioanal Chem ; 410(27): 7113-7120, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30112649

ABSTRACT

Endodontic treatment of immature permanent teeth with necrotic pulp poses several clinical challenges and is one of the most demanding interventions in endodontics. Recently, with new discoveries in the field of tissue engineering, novel treatment protocols have been established. The most promising treatment modality is revascularization, whose integral part is the exposure of collagen matrix and embedded growth factors. However, optimization of the treatment protocol requires a development of analytical procedures able to analyze growth factors directly on the sample surface. In this work, method based on surface-enhanced Raman spectroscopy (SERS) was developed to investigate the influence of the time of the medical treatment using EDTA on exposure and accessibility of the growth factors, namely TGF-ß1, BMP-2, and bFGF on the dentine surface. The nanotags, which consist of magnetic Fe3O4@Ag nanocomposite covalently functionalized by tagged antibodies (anti-TGF-ß1-Cy3, anti-BMP-2-Cy5, and anti-bFGF-Cy7), were employed as a SERS substrate. Each antibody was coupled with a unique label allowing us to perform a parallel analysis of all three growth factors within one analytical run. Developed methodology presents an interesting alternative to a fluorescence microscopy and in contrary allows evaluating a chemical composition and thus minimizing possible false-positive results. Graphical abstract.


Subject(s)
Bone Morphogenetic Protein 2/analysis , Dental Pulp Cavity/chemistry , Dentin/chemistry , Fibroblast Growth Factor 2/analysis , Spectrum Analysis, Raman/methods , Transforming Growth Factor beta/analysis , Ferrosoferric Oxide/chemistry , Humans , Nanocomposites/chemistry , Silver/chemistry
13.
Adv Mater ; 30(15): e1705789, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29516561

ABSTRACT

The design of advanced high-energy-density supercapacitors requires the design of unique materials that combine hierarchical nanoporous structures with high surface area to facilitate ion transport and excellent electrolyte permeability. Here, shape-controlled 2D nanoporous carbon sheets (NPSs) with graphitic wall structure through the pyrolysis of metal-organic frameworks (MOFs) are developed. As a proof-of-concept application, the obtained NPSs are used as the electrode material for a supercapacitor. The carbon-sheet-based symmetric cell shows an ultrahigh Brunauer-Emmett-Teller (BET)-area-normalized capacitance of 21.4 µF cm-2 (233 F g-1 ), exceeding other carbon-based supercapacitors. The addition of potassium iodide as redox-active species in a sulfuric acid (supporting electrolyte) leads to the ground-breaking enhancement in the energy density up to 90 Wh kg-1 , which is higher than commercial aqueous rechargeable batteries, maintaining its superior power density. Thus, the new material provides a double profits strategy such as battery-level energy and capacitor-level power density.

14.
Anal Chim Acta ; 997: 44-51, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29149993

ABSTRACT

Prostate cancer is one of the most common cancers among men and can in its later stages cause serious medical problems. Due to the limited suitability of current diagnostic biochemical markers, new biomarkers for the detection of prostate cancer are highly sought after. An ideal biomarker should serve as a reliable prognostic marker, be applicable for early diagnosis, and be applicable for monitoring of therapeutic response. One potential candidate is glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), which has a promising role for direct imaging. GCPII is considerably over-expressed on cancerous prostatic epithelial cells; its analysis typically follows radiological or spectrophotometric principles. Its role as a biomarker present in blood has been recently investigated and potential correlation between a concentration of GCPII and prostate cancer has been proposed. The wider inclusion of GCPII detection in clinical praxis limits mainly the time and cost per analysis. Here, we present a novel analytical nanosensor applicable to quantification of GCPII in human whole blood consisted of Fe3O4@Ag magnetic nanocomposite surface-functionalized by an artificial antibody (low-molecular-weight GCPII synthetic inhibitor). The nanocomposite allows a simple magnetic isolation of GCPII using external magnetic force and its consecutive determination by magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) with a limit of detection 6 pmol. L-1. This method enables a rapid determination of picomolar concentrations of GCPII in whole human blood of healthy individuals using a standard addition method without a complicated sample pre-treatment.


Subject(s)
Antigens, Surface/blood , Biomarkers, Tumor/blood , Early Detection of Cancer/methods , Glutamate Carboxypeptidase II/blood , Prostatic Neoplasms/diagnosis , Spectrum Analysis, Raman/methods , Antibodies/chemistry , Antigens, Surface/chemistry , Biomarkers, Tumor/chemistry , Ferric Compounds/chemistry , Glutamate Carboxypeptidase II/chemistry , Humans , Limit of Detection , Magnets/chemistry , Male , Nanocomposites/chemistry , Silver/chemistry
15.
Sci Rep ; 7(1): 11585, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912493

ABSTRACT

A facile approach for the synthesis of magnetite microspheres with flower-like morphology is reported that proceeds via the reduction of iron(III) oxide under a hydrogen atmosphere. The ensuing magnetic catalyst is well characterized by XRD, FE-SEM, TEM, N2 adsorption-desorption isotherm, and Mössbauer spectroscopy and explored for a simple yet efficient transfer hydrogenation reduction of a variety of nitroarenes to respective anilines in good to excellent yields (up to 98%) employing hydrazine hydrate. The catalyst could be easily separated at the end of a reaction using an external magnet and can be recycled up to 10 times without any loss in catalytic activity.

16.
Chembiochem ; 18(15): 1535-1543, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28471098

ABSTRACT

We report that 3',5'-cyclic CMP undergoes nonenzymatic di- and trimerization at 20 °C under dry conditions upon proton or UV irradiation. The reaction involves stacking of the cyclic monomers and subsequent polymerization through serial transphosphorylations between the stacked monomers. Proton- and UV-induced oligomerization of 3',5'-cyclic CMP demonstrates that pyrimidines-similar to purines-might also have taken part in the spontaneous generation of RNA under plausible prebiotic conditions as well as in an extraterrestrial context. The observed polymerization of naturally occurring 3',5'-cyclic nucleotides supports the possibility that the extant genetic nucleic acids might have originated by way of a straight Occamian path, starting from simple reactions between plausibly preactivated monomers.


Subject(s)
Cyclic CMP/chemistry , Cyclic CMP/radiation effects , Oligoribonucleotides/chemical synthesis , RNA/chemical synthesis , Circular Dichroism , Evolution, Chemical , Models, Chemical , Polymerization , Protons , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Ultraviolet Rays
17.
Anal Chem ; 89(12): 6598-6607, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28530395

ABSTRACT

Accurate and rapid diagnosis of prosthetic joint infection (PJI) is vital for rational and effective therapeutic management of this condition. Several diagnostic strategies have been developed for discriminating between infected and noninfected cases. However, none of them can reliably diagnose the whole spectrum of clinical presentations of PJI. Here, we report a new method for PJI detection based on magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) using streptavidin-modified magnetic nanoparticles (MNP@Strep) whose surface is functionalized with suitable biotinylated antibodies and then coated with silver nanoparticles by self-assembly. The high efficiency of this approach is demonstrated by the diagnosis of infections caused by two bacterial species commonly associated with PJI, namely, Staphylococcus aureus and Streptococcus pyogenes. The method's performance was verified with model samples of bacterial lysates and with four real-matrix samples of knee joint fluid spiked with live pathogenic bacterial cells. This procedure is operationally simple, versatile, inexpensive, and quick to perform, making it a potentially attractive alternative to established diagnostic techniques based on Koch's culturing or colony counting methods.


Subject(s)
Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Prosthesis-Related Infections/diagnosis , Spectrum Analysis, Raman , Humans , Streptavidin/chemistry , Surface Properties
18.
Nat Commun ; 8: 14525, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28216636

ABSTRACT

Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via -OH functionalization.

19.
ACS Nano ; 11(3): 2982-2991, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28208019

ABSTRACT

Efficient and selective methods for covalent derivatization of graphene are needed because they enable tuning of graphene's surface and electronic properties, thus expanding its application potential. However, existing approaches based mainly on chemistry of graphene and graphene oxide achieve only limited level of functionalization due to chemical inertness of the surface and nonselective simultaneous attachment of different functional groups, respectively. Here we present a conceptually different route based on synthesis of cyanographene via the controllable substitution and defluorination of fluorographene. The highly conductive and hydrophilic cyanographene allows exploiting the complex chemistry of -CN groups toward a broad scale of graphene derivatives with very high functionalization degree. The consequent hydrolysis of cyanographene results in graphene acid, a 2D carboxylic acid with pKa of 5.2, showing excellent biocompatibility, conductivity and dispersibility in water and 3D supramolecular assemblies after drying. Further, the carboxyl groups enable simple, tailored and widely accessible 2D chemistry onto graphene, as demonstrated via the covalent conjugation with a diamine, an aminothiol and an aminoalcohol. The developed methodology represents the most controllable, universal and easy to use approach toward a broad set of 2D materials through consequent chemistries on cyanographene and on the prepared carboxy-, amino-, sulphydryl-, and hydroxy- graphenes.

20.
Chemistry ; 22(40): 14219-26, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27529148

ABSTRACT

The present study is aimed at the exploration of achievable improvements for Cr(VI) ex situ and in situ water remediation by using novel naked colloidal maghemite (γ-Fe2 O3 ) nanoparticles (surface active maghemite nanoparticles, SAMNs). The reliability of SAMNs for Cr(VI) binding and removal was demonstrated, and SAMN@Cr(VI) complex was characterized, as well as the covalent nature of the absorption was unequivocally proved. SAMNs were structurally and magnetically well conserved after Cr(VI) binding. Thus, in consideration of their affinity for Cr(VI) , SAMNs were exploited in a biological model system, mimicking a real in situ application. The assay evidenced a progressive reduction of revertant colonies of Salmonella typhimurium TA100 strain, as maghemite nanoparticles concentration increased, till the complete suppression of Cr(VI) mutagen effect. Finally, an automatic modular pilot system for continuous magnetic removal and recovery of Cr(VI) from water is proposed. SAMNs, thanks to their colloidal, binding, and catalytic properties, represent a promising tool as a reliable nanomaterial for water remediation by Cr(VI) .

SELECTION OF CITATIONS
SEARCH DETAIL