Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Mov Disord ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056163

ABSTRACT

BACKGROUND: Clinical trials for upcoming disease-modifying therapies of spinocerebellar ataxias (SCA), a group of rare movement disorders, lack endpoints sensitive to early disease progression, when therapeutics will be most effective. In addition, regulatory agencies emphasize the importance of biological outcomes. OBJECTIVES: READISCA, a transatlantic clinical trial readiness consortium, investigated whether advanced multimodal magnetic resonance imaging (MRI) detects pathology progression over 6 months in preataxic and early ataxic carriers of SCA mutations. METHODS: A total of 44 participants (10 SCA1, 25 SCA3, and 9 controls) prospectively underwent 3-T MR scanning at baseline and a median [interquartile range] follow-up of 6.2 [5.9-6.7] months; 44% of SCA participants were preataxic. Blinded analyses of annual changes in structural, diffusion MRI, MR spectroscopy, and the Scale for Assessment and Rating of Ataxia (SARA) were compared between groups using nonparametric testing. Sample sizes were estimated for 6-month interventional trials with 50% to 100% treatment effect size, leveraging existing large cohort data (186 SCA1, 272 SCA3) for the SARA estimate. RESULTS: Rate of change in microstructural integrity (decrease in fractional anisotropy, increase in diffusivities) in the middle cerebellar peduncle, corona radiata, and superior longitudinal fasciculus significantly differed in SCAs from controls (P < 0.005), with high effect sizes (Cohen's d = 1-2) and moderate-to-high responsiveness (|standardized response mean| = 0.6-0.9) in SCAs. SARA scores did not change, and their rate of change did not differ between groups. CONCLUSIONS: Diffusion MRI is sensitive to disease progression at very early-stage SCA1 and SCA3 and may provide a >5-fold reduction in sample sizes relative to SARA as endpoint for 6-month-long trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Am J Med Genet A ; : e63825, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058293

ABSTRACT

Pyruvate dehydrogenase complex deficiency (PDCD) is a mitochondrial disorder of carbohydrate oxidation characterized by lactic acidosis and central nervous system involvement. Knowledge of the affected metabolic pathways and clinical observations suggest that early initiation of the ketogenic diet may ameliorate the metabolic and neurologic course of the disease. We present a case in which first trimester ultrasound identified structural brain abnormalities prompting a prenatal molecular diagnosis of PDCD. Ketogenic diet, thiamine, and N-acetylcysteine were initiated in the perinatal period with good response, including sustained developmental progress. This case highlights the importance of a robust neurometabolic differential diagnosis for prenatally diagnosed structural anomalies and the use of prenatal molecular testing to facilitate rapid, genetically tailored intervention.

3.
Radiology ; 311(2): e230999, 2024 May.
Article in English | MEDLINE | ID: mdl-38805733

ABSTRACT

Background Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the impact of LLLT on the functional connectivity of the brain when at rest has not been well studied. Purpose To use functional MRI to assess the effect of LLLT on whole-brain resting-state functional connectivity (RSFC) in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases. Materials and Methods This is a secondary analysis of a prospective single-site double-blinded sham-controlled study conducted in patients presenting to the emergency department with moderate TBI from November 2015 to July 2019. Participants were randomized for LLLT and sham treatment. The primary outcome of the study was to assess structural connectivity, and RSFC was collected as the secondary outcome. MRI was used to measure RSFC in 82 brain regions in participants during the three recovery phases. Healthy individuals who did not receive treatment were imaged at a single time point to provide control values. The Pearson correlation coefficient was estimated to assess the connectivity strength for each brain region pair, and estimates of the differences in Fisher z-transformed correlation coefficients (hereafter, z differences) were compared between recovery phases and treatment groups using a linear mixed-effects regression model. These analyses were repeated for all brain region pairs. False discovery rate (FDR)-adjusted P values were computed to account for multiple comparisons. Quantile mixed-effects models were constructed to quantify the association between the Rivermead Postconcussion Symptoms Questionnaire (RPQ) score, recovery phase, and treatment group. Results RSFC was evaluated in 17 LLLT-treated participants (median age, 50 years [IQR, 25-67 years]; nine female), 21 sham-treated participants (median age, 50 years [IQR, 43-59 years]; 11 female), and 23 healthy control participants (median age, 42 years [IQR, 32-54 years]; 13 male). Seven brain region pairs exhibited a greater change in connectivity in LLLT-treated participants than in sham-treated participants between the acute and subacute phases (range of z differences, 0.37 [95% CI: 0.20, 0.53] to 0.45 [95% CI: 0.24, 0.67]; FDR-adjusted P value range, .010-.047). Thirteen different brain region pairs showed an increase in connectivity in sham-treated participants between the subacute and late-subacute phases (range of z differences, 0.17 [95% CI: 0.09, 0.25] to 0.26 [95% CI: 0.14, 0.39]; FDR-adjusted P value range, .020-.047). There was no evidence of a difference in clinical outcomes between LLLT-treated and sham-treated participants (range of differences in medians, -3.54 [95% CI: -12.65, 5.57] to -0.59 [95% CI: -7.31, 8.49]; P value range, .44-.99), as measured according to RPQ scores. Conclusion Despite the small sample size, the change in RSFC from the acute to subacute phases of recovery was greater in LLLT-treated than sham-treated participants, suggesting that acute-phase LLLT may have an impact on resting-state neuronal circuits in the early recovery phase of moderate TBI. ClinicalTrials.gov Identifier: NCT02233413 © RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Brain Injuries, Traumatic , Low-Level Light Therapy , Magnetic Resonance Imaging , Humans , Male , Female , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/physiopathology , Double-Blind Method , Adult , Magnetic Resonance Imaging/methods , Prospective Studies , Low-Level Light Therapy/methods , Middle Aged , Brain/diagnostic imaging , Brain/radiation effects , Brain/physiopathology , Rest
4.
Brain Behav Immun ; 119: 713-723, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642615

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction. In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls. We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction. These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.


Subject(s)
Brain , COVID-19 , Neuroinflammatory Diseases , Positron-Emission Tomography , SARS-CoV-2 , Humans , COVID-19/diagnostic imaging , COVID-19/complications , Male , Positron-Emission Tomography/methods , Female , Middle Aged , Adult , Neuroinflammatory Diseases/diagnostic imaging , Brain/diagnostic imaging , Brain/metabolism , Post-Acute COVID-19 Syndrome , Vascular Diseases/diagnostic imaging , Aged , Pyridines , Pyrimidines
5.
Magn Reson Imaging ; 109: 249-255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521366

ABSTRACT

BACKGROUND: Neurological complications of the COVID-19 infection may be caused in part by local neurochemical and structural abnormalities that could not be detected during routine medical examinations. We examined within subject neurometabolic and structural brain alterations from pre-to post-COVID-19 in the hippocampal region of three elderly individuals (aged 63-68 years) who had a COVID-19 infection with mild symptoms. Patients were participating in an interventional study in which they were closely monitored at the time they were diagnosed with COVID-19. Patients 1 and 2 just completed 18-20 resistance training sessions prior to their diagnosis. Patient 3 was assigned to a non-training condition in the same study. METHODS: Whole brain magnetic resonance imaging (MRI) images and proton magnetic resonance spectroscopy (1H-MRS) of the left hippocampus were collected before and after infection. Structural and spectroscopic imaging measures post-COVID-19 were contrasted to the pre-COVID-19 measures and were compared with values for Minimal Detectable Change at 95% (MDC95) and 90% (MDC90) confidence from a group of six elderly (aged 60-79 years) without COVID-19 that participated in the same study. RESULTS: After SARS-COV-2 infection, we observed a reduction of glutamate-glutamine (Glx) in Patients 1 and 2 (≥ 42.0%) and elevation of myo-inositol (mIns) and N-acetyl-aspartate (NAA) in Patient 3 (≥ 36.4%); all > MDC90. MRI findings showed increased (Patients 1 and 2) or unchanged (Patient 3) hippocampal volume. CONCLUSIONS: Overall, findings from this exploratory study suggest that mild COVID-19 infection could be associated with development of local neuroinflammation and reduced glutamate levels in the hippocampus. Our 1H-MRS findings may have clinical value for explaining chronic neurological and psychological complaints in COVID-19 long-haulers.


Subject(s)
COVID-19 , Aged , Humans , SARS-CoV-2 , Magnetic Resonance Imaging/methods , Glutamic Acid , Hippocampus/diagnostic imaging , Hippocampus/pathology , Aspartic Acid , Inositol
6.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37962377

ABSTRACT

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Subject(s)
Cerebellar Ataxia , Machado-Joseph Disease , Humans , Machado-Joseph Disease/genetics , Cross-Sectional Studies , Ataxia , Biomarkers
7.
Ann Clin Transl Neurol ; 11(1): 207-224, 2024 01.
Article in English | MEDLINE | ID: mdl-38009419

ABSTRACT

OBJECTIVE: Late-onset GM2 gangliosidosis (LOGG) subtypes late-onset Tay-Sachs (LOTS) and Sandhoff disease (LOSD) are ultra-rare neurodegenerative lysosomal storage disorders presenting with weakness, ataxia, and neuropsychiatric symptoms. Previous studies considered LOTS and LOSD clinically indistinguishable; recent studies have challenged this. We performed a scoping review to ascertain whether imaging and clinical features may differentiate these diseases. METHODS: We examined MEDLINE/non-MEDLINE databases up to May 2022. Articles reporting brain imaging findings in genetically/enzymatically confirmed LOGG, symptom onset at age ≥ 10 years (or evaluated at least once ≥18 years) were included, yielding 170 LOGG patients (LOTS = 127, LOSD = 43) across 68 papers. We compared LOTS versus LOSD and performed regression analyses. Results were corrected for multiple comparisons. RESULTS: Age of onset was lower in LOTS versus LOSD (17.9 ± 8.2 vs. 23.9 ± 14.4 years, p = 0.017), although disease duration was similar (p = 0.34). LOTS more commonly had psychosis/bipolar symptoms (35.0% vs. 9.30%, p = 0.011) but less frequent swallowing problems (4.10% vs. 18.60%, p = 0.041). Cerebellar atrophy was more common in LOTS (89.0%) versus LOSD (60.5%), p < 0.0001, with more severe atrophy in LOTS (p = 0.0005). Brainstem atrophy was documented only in LOTS (14.2%). Independent predictors of LOTS versus LOSD (odds ratio [95% confidence interval]) included the presence of psychosis/bipolar symptoms (4.95 [1.59-19.52], p = 0.011), no swallowing symptoms (0.16 [0.036-0.64], p = 0.011), and cerebellar atrophy (5.81 [2.10-17.08], p = 0.0009). Lower age of onset (0.96 [0.93-1.00], p = 0.075) and tremor (2.50 [0.94-7.43], p = 0.078) were marginally statistically significant but felt relevant to include in the model. INTERPRETATION: These data suggest significant differences in symptomatology, disease course, and imaging findings between LOTS and LOSD.


Subject(s)
Gangliosidoses, GM2 , Neurodegenerative Diseases , Psychotic Disorders , Humans , Child , Disease Progression , Atrophy , Gangliosidoses, GM2/diagnostic imaging
8.
Pain ; 165(1): 126-134, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37578456

ABSTRACT

ABSTRACT: Recently, we showed that patients with knee osteoarthritis (KOA) demonstrate alterations in the thalamic concentrations of several metabolites compared with healthy controls: higher myo-inositol (mIns), lower N-acetylaspartate (NAA), and lower choline (Cho). Here, we evaluated whether these metabolite alterations are specific to KOA or could also be observed in patients with a different musculoskeletal condition, such as chronic low back pain (cLBP). Thirty-six patients with cLBP and 20 healthy controls were scanned using 1 H-magnetic resonance spectroscopy (MRS) and a PRESS (Point RESolved Spectroscopy) sequence with voxel placement in the left thalamus. Compared with healthy controls, patients with cLBP demonstrated lower absolute concentrations of NAA ( P = 0.0005) and Cho ( P < 0.05) and higher absolute concentrations of mIns ( P = 0.01) when controlling for age, as predicted by our previous work in KOA. In contrast to our KOA study, mIns levels in this population did not significantly correlate with pain measures (eg, pain severity or duration). However, exploratory analyses revealed that NAA levels in patients were negatively correlated with the severity of sleep disturbance ( P < 0.01), which was higher in patients compared with healthy controls ( P < 0.001). Additionally, also in patients, both Cho and mIns levels were positively correlated with age ( P < 0.01 and P < 0.05, respectively). Altogether, these results suggest that thalamic metabolite changes may be common across etiologically different musculoskeletal chronic pain conditions, including cLBP and KOA, and may relate to symptoms often comorbid with chronic pain, such as sleep disturbance. The functional and clinical significance of these brain changes remains to be fully understood.


Subject(s)
Chronic Pain , Low Back Pain , Musculoskeletal Pain , Rheumatic Diseases , Humans , Chronic Pain/metabolism , Low Back Pain/complications , Low Back Pain/diagnostic imaging , Musculoskeletal Pain/metabolism , Magnetic Resonance Spectroscopy/methods , Thalamus/diagnostic imaging , Aspartic Acid/metabolism , Choline/metabolism , Creatine/metabolism
9.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37905031

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction. In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls. We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction. These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.

10.
Curr Opin Pulm Med ; 29(6): 603-609, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37655981

ABSTRACT

PURPOSE OF REVIEW: This review highlights the problem of neuropsychiatric adverse effects (AEs) associated with elexacaftor/tezacaftor/ivacaftor (ETI), current suboptimal mitigation approaches, a novel testable mechanistic hypothesis, and potential solutions requiring further research. RECENT FINDINGS: Studies show that a minority of persons with cystic fibrosis (PwCF) initiating cystic fibrosis transmembrane conductance regulator (CFTR) modulators experience neuropsychiatric AEs including worsening mood, cognition, anxiety, sleep, and suicidality. The GABA-A receptor is a ligand-gated chloride channel, and magnetic resonance spectroscopy neuroimaging studies have shown that reduced GABA expression in rostral anterior cingulate cortex is associated with anxiety and depression. Recent research details the impact of peripheral inflammation and the gut-brain axis on central neuroinflammation. Plasma ETI concentrations and sweat chloride have been evaluated in small studies of neuropsychiatric AEs but not validated to guide dose titration or correlated with pharmacogenomic variants or safety/efficacy. SUMMARY: Although ETI is well tolerated by most PwCF, some experience debilitating neuropsychiatric AEs. In some cases, these AEs may be driven by modulation of CFTR and chloride transport within the brain. Understanding biological mechanisms is a critical next step in identifying which PwCF are likely to experience AEs, and in developing evidence-based strategies to mitigate them, while retaining modulator efficacy.

11.
medRxiv ; 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37163081

ABSTRACT

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.

12.
Cerebellum ; 22(5): 790-809, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35962273

ABSTRACT

Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.


Subject(s)
Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/epidemiology , Patient Acuity , Disease Progression
13.
Neuropsychopharmacology ; 48(5): 797-805, 2023 04.
Article in English | MEDLINE | ID: mdl-35995971

ABSTRACT

Glucose metabolism is impaired in brain aging and several neurological conditions. Beneficial effects of ketones have been reported in the context of protecting the aging brain, however, their neurophysiological effect is still largely uncharacterized, hurdling their development as a valid therapeutic option. In this report, we investigate the neurochemical effect of the acute administration of a ketone d-beta-hydroxybutyrate (D-ßHB) monoester in fasting healthy participants with ultrahigh-field proton magnetic resonance spectroscopy (MRS). In two within-subject metabolic intervention experiments, 7 T MRS data were obtained in fasting healthy participants (1) in the anterior cingulate cortex pre- and post-administration of D-ßHB (N = 16), and (2) in the posterior cingulate cortex pre- and post-administration of D-ßHB compared to active control glucose (N = 26). Effect of age and blood levels of D-ßHB and glucose were used to further explore the effect of D-ßHB and glucose on MRS metabolites. Results show that levels of GABA and Glu were significantly reduced in the anterior and posterior cortices after administration of D-ßHB. Importantly, the effect was specific to D-ßHB and not observed after administration of glucose. The magnitude of the effect on GABA and Glu was significantly predicted by older age and by elevation of blood levels of D-ßHB. Together, our results show that administration of ketones acutely impacts main inhibitory and excitatory transmitters in the whole fasting cortex, compared to normal energy substrate glucose. Critically, such effects have an increased magnitude in older age, suggesting an increased sensitivity to ketones with brain aging.


Subject(s)
Glutamic Acid , Gyrus Cinguli , Humans , Adult , 3-Hydroxybutyric Acid/pharmacology , Glutamic Acid/metabolism , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Ketones , Proton Magnetic Resonance Spectroscopy , Glucose , gamma-Aminobutyric Acid
14.
Ann Neurol ; 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36511514

ABSTRACT

OBJECTIVE: This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting. METHODS: SCA1 or SCA3 mutation carriers and controls (n = 107) underwent MR scanning in the US-European READISCA study to obtain structural, diffusion MRI, and MR spectroscopy data using an advanced protocol at 3T. Morphometric, microstructural, and neurochemical metrics were analyzed blinded to diagnosis and compared between preataxic SCA (n = 11 SCA1, n = 28 SCA3), ataxic SCA (n = 14 SCA1, n = 37 SCA3), and control (n = 17) groups using nonparametric testing accounting for multiple comparisons. MR metrics that were most sensitive to preataxic abnormalities were identified using receiver operating characteristic (ROC) analyses. RESULTS: Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons were prominent in both preataxic groups, when patients did not differ from controls clinically. MR metrics were strongly associated with ataxia symptoms, activities of daily living, and estimated ataxia duration. A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 (ROC area under the curve [AUC] = 0.95), and a microstructural metric was the most sensitive metric to preataxic changes in SCA3 (AUC = 0.92). INTERPRETATION: Changes in cerebellar afferent and efferent pathways underlie the earliest symptoms of both SCAs. MR metrics collected with a harmonized advanced protocol in the multisite trial setting allow detection of disease effects in individuals before ataxia onset with potential clinical trial utility for subject stratification. ANN NEUROL 2022.

15.
Neurooncol Adv ; 4(1): vdac128, 2022.
Article in English | MEDLINE | ID: mdl-36071927

ABSTRACT

Background: There is a need to establish biomarkers that distinguish between pseudoprogression (PsP) and true tumor progression in patients with glioblastoma (GBM) treated with chemoradiation. Methods: We analyzed magnetic resonance spectroscopic imaging (MRSI) and dynamic susceptibility contrast (DSC) MR perfusion data in patients with GBM with PsP or disease progression after chemoradiation. MRSI metabolites of interest included intratumoral choline (Cho), myo-inositol (mI), glutamate + glutamine (Glx), lactate (Lac), and creatine on the contralateral hemisphere (c-Cr). Student T-tests and area under the ROC curve analyses were used to detect group differences in metabolic ratios and their ability to predict clinical status, respectively. Results: 28 subjects (63 ± 9 years, 19 men) were evaluated. Subjects with true progression (n = 20) had decreased enhancing region mI/c-Cr (P = .011), a marker for more aggressive tumors, compared to those with PsP, which predicted tumor progression (AUC: 0.84 [0.76, 0.92]). Those with true progression had elevated Lac/Glx (P = .0009), a proxy of the Warburg effect, compared to those with PsP which predicted tumor progression (AUC: 0.84 [0.75, 0.92]). Cho/c-Cr did not distinguish between PsP and true tumor progression. Despite rCBV (AUC: 0.70 [0.60, 0.80]) and rCBF (AUC: 0.75 [0.65, 0.84]) being individually predictive of tumor response, they added no additional predictive value when combined with MRSI metabolic markers. Conclusions: Incorporating enhancing lesion MRSI measures of mI/c-Cr and Lac/Glx into brain tumor imaging protocols can distinguish between PsP and true progression and inform patient management decisions.

16.
Neurooncol Adv ; 4(1): vdac103, 2022.
Article in English | MEDLINE | ID: mdl-35892047

ABSTRACT

Background: The impact of anti-angiogenic therapy (AAT) on patients with glioblastoma (GBM) is unclear due to a disconnect between radiographic findings and overall survivorship. MR spectroscopy (MRS) can provide clinically relevant information regarding tumor metabolism in response to AAT. This review explores the use of MRS to track metabolic changes in patients with GBM treated with AAT. Methods: We conducted a systematic literature review in accordance with PRISMA guidelines to identify primary research articles that reported metabolic changes in GBMs treated with AAT. Collected variables included single or multi-voxel MRS acquisition parameters, metabolic markers, reported metabolic changes in response to AAT, and survivorship data. Results: Thirty-five articles were retrieved in the initial query. After applying inclusion and exclusion criteria, 11 studies with 262 patients were included for qualitative synthesis with all studies performed using multi-voxel 1H MRS. Two studies utilized 31P MRS. Post-AAT initiation, shorter-term survivors had increased choline (cellular proliferation marker), increased lactate (a hypoxia marker), and decreased levels of the short echo time (TE) marker, myo-inositol (an osmoregulator and gliosis marker). MRS detected metabolic changes as soon as 1-day after AAT, and throughout the course of AAT, to predict survival. There was substantial heterogeneity in the timing of scans, which ranged from 1-day to 6-9 months after AAT initiation. Conclusions: Multi-voxel MRS at intermediate and short TE can serve as a robust prognosticator of outcomes of patients with GBM who are treated with AAT.

17.
Elife ; 112022 05 24.
Article in English | MEDLINE | ID: mdl-35608247

ABSTRACT

Background: Type 2 diabetes mellitus (T2DM) is known to be associated with neurobiological and cognitive deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in the context of the brain are currently unknown. Methods: We characterized neurocognitive effects independently associated with T2DM and age in a large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by applying correlation measures to the separately characterized neurocognitive changes. Our findings were complemented by meta-analyses of published reports with cognitive or neuroimaging measures for T2DM and healthy controls (HCs). We also evaluated in a cohort of T2DM-diagnosed individuals using UK Biobank how disease chronicity and metformin treatment interact with the identified neurocognitive effects. Results: The UK Biobank dataset included cognitive and neuroimaging data (N = 20,314), including 1012 T2DM and 19,302 HCs, aged between 50 and 80 years. Duration of T2DM ranged from 0 to 31 years (mean 8.5 ± 6.1 years); 498 were treated with metformin alone, while 352 were unmedicated. Our meta-analysis evaluated 34 cognitive studies (N = 22,231) and 60 neuroimaging studies: 30 of T2DM (N = 866) and 30 of aging (N = 1088). Compared to age, sex, education, and hypertension-matched HC, T2DM was associated with marked cognitive deficits, particularly in executive functioning and processing speed. Likewise, we found that the diagnosis of T2DM was significantly associated with gray matter atrophy, primarily within the ventral striatum, cerebellum, and putamen, with reorganization of brain activity (decreased in the caudate and premotor cortex and increased in the subgenual area, orbitofrontal cortex, brainstem, and posterior cingulate cortex). The structural and functional changes associated with T2DM show marked overlap with the effects correlating with age but appear earlier, with disease duration linked to more severe neurodegeneration. Metformin treatment status was not associated with improved neurocognitive outcomes. Conclusions: The neurocognitive impact of T2DM suggests marked acceleration of normal brain aging. T2DM gray matter atrophy occurred approximately 26% ± 14% faster than seen with normal aging; disease duration was associated with increased neurodegeneration. Mechanistically, our results suggest a neurometabolic component to brain aging. Clinically, neuroimaging-based biomarkers may provide a valuable adjunctive measure of T2DM progression and treatment efficacy based on neurological effects. Funding: The research described in this article was funded by the W. M. Keck Foundation (to LRMP), the White House Brain Research Through Advancing Innovative Technologies (BRAIN) Initiative (NSFNCS-FR 1926781 to LRMP), and the Baszucki Brain Research Fund (to LRMP). None of the funding sources played any role in the design of the experiments, data collection, analysis, interpretation of the results, the decision to publish, or any aspect relevant to the study. DJW reports serving on data monitoring committees for Novo Nordisk. None of the authors received funding or in-kind support from pharmaceutical and/or other companies to write this article.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Metformin , Aged , Aged, 80 and over , Aging , Atrophy , Biological Specimen Banks , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Humans , Magnetic Resonance Imaging/methods , Middle Aged , United Kingdom
18.
Brain Behav Immun ; 102: 89-97, 2022 05.
Article in English | MEDLINE | ID: mdl-35181440

ABSTRACT

While COVID-19 research has seen an explosion in the literature, the impact of pandemic-related societal and lifestyle disruptions on brain health among the uninfected remains underexplored. However, a global increase in the prevalence of fatigue, brain fog, depression and other "sickness behavior"-like symptoms implicates a possible dysregulation in neuroimmune mechanisms even among those never infected by the virus. We compared fifty-seven 'Pre-Pandemic' and fifteen 'Pandemic' datasets from individuals originally enrolled as control subjects for various completed, or ongoing, research studies available in our records, with a confirmed negative test for SARS-CoV-2 antibodies. We used a combination of multimodal molecular brain imaging (simultaneous positron emission tomography / magnetic resonance spectroscopy), behavioral measurements, imaging transcriptomics and serum testing to uncover links between pandemic-related stressors and neuroinflammation. Healthy individuals examined after the enforcement of 2020 lockdown/stay-at-home measures demonstrated elevated brain levels of two independent neuroinflammatory markers (the 18 kDa translocator protein, TSPO, and myoinositol) compared to pre-lockdown subjects. The serum levels of two inflammatory markers (interleukin-16 and monocyte chemoattractant protein-1) were also elevated, although these effects did not reach statistical significance after correcting for multiple comparisons. Subjects endorsing higher symptom burden showed higher TSPO signal in the hippocampus (mood alteration, mental fatigue), intraparietal sulcus and precuneus (physical fatigue), compared to those reporting little/no symptoms. Post-lockdown TSPO signal changes were spatially aligned with the constitutive expression of several genes involved in immune/neuroimmune functions. This work implicates neuroimmune activation as a possible mechanism underlying the non-virally-mediated symptoms experienced by many during the COVID-19 pandemic. Future studies will be needed to corroborate and further interpret these preliminary findings.


Subject(s)
COVID-19 , Pandemics , Biomarkers/metabolism , Brain/metabolism , Communicable Disease Control , Humans , Neuroinflammatory Diseases , Receptors, GABA/metabolism , SARS-CoV-2
19.
Magn Reson Med ; 87(6): 2613-2620, 2022 06.
Article in English | MEDLINE | ID: mdl-35092085

ABSTRACT

PURPOSE: Advanced MRS protocols improve data quality and reproducibility relative to vendor-provided protocols; however, they are challenging to incorporate into the clinical workflow and require local MRS expertise for successful implementation. Here, we developed an automated advanced MRS acquisition protocol at 3T to facilitate acquisition of high-quality spectroscopic data without local MRS expertise. METHODS: First, a B0 shimming protocol was selected for automation by comparing 3 widely used B0 algorithms (2 vendor protocols and FAST(EST)MAP). Next, voxel-based B0 and B1 calibrations were incorporated into the consensus-recommended semi-LASER sequence and combined with an automated VOI prescription tool, a recently developed method for automated voxel prescription. The efficiency of collecting single-voxel data from a clinical cohort (N = 40) with the automated protocol (calibration time and fraction of usable datasets) was compared with the nonautomated semi-LASER protocol (N = 35) whereby all prescan calibrations were executed manually in the academic hospital setting with rotating MR technologists in the neuroradiology unit. RESULTS: A multi-iteration FAST(EST)MAP protocol resulted in narrower water linewidths than vendor's B0 shim protocols for data acquired from 6 brain locations (p < 1e-5) and was selected for automation. The automated B0 and B1 calibrations resulted in a time saving of ~4.5 minutes per voxel relative to the same advanced protocol executed manually. All spectra acquired with the automated protocol were usable, whereas only 86% of those collected with the manual protocol were usable and spectral quality was more variable. CONCLUSION: The plug-and-play advanced MRS protocol allows automated acquisition of high-quality MRS data with high success rate and consistency on a clinical 3T platform.


Subject(s)
Brain , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Reproducibility of Results
20.
Radiology ; 302(2): 410-418, 2022 02.
Article in English | MEDLINE | ID: mdl-34751617

ABSTRACT

Background Patients with recurrent glioblastoma (GBM) are often treated with antiangiogenic agents, such as bevacizumab (BEV). Despite therapeutic promise, conventional MRI methods fail to help determine which patients may not benefit from this treatment. Purpose To use MR spectroscopic imaging (MRSI) with intermediate and short echo time to measure corrected myo-inositol (mI)normalized by contralateral creatine (hereafter, mI/c-Cr) in participants with recurrent GBM treated with BEV and to investigate whether such measurements can help predict survivorship before BEV initiation (baseline) and at 1 day, 4 weeks, and 8 weeks thereafter. Materials and Methods In this prospective longitudinal study (2016-2020), spectroscopic data on mI-a glial marker and osmoregulator within the brain-normalized by contralateral creatine in the intratumoral, contralateral, and peritumoral volumes of patients with recurrent GBM were evaluated. Area under the receiver operating characteristic curve (AUC) was calculated for all volumes at baseline and 1 day, 4 weeks, and 8 weeks after treatment to determine the ability of mI/c-Cr to help predict survivorship. Results Twenty-one participants (median age ± standard deviation, 62 years ± 12; 15 men) were evaluated. Lower mI/c-Cr in the tumor before and during BEV treatment was predictive of poor survivorship, with receiver operating characteristic analyses showing an AUC of 0.75 at baseline, 0.87 at 1 day after treatment, and 1 at 8 weeks after. A similar result was observed in contralateral normal-appearing tissue and the peritumoral volume, with shorter-term survivors having lower levels of mI/c-Cr. In the contralateral volume, a lower ratio of mI to creatine (hereafter, mI/Cr) predicted shorter-term survival at baseline and all other time points. Within the peritumoral volume, lower mI/c-Cr levels were predictive of shorter-term survival at baseline (AUC, 0.80), at 1 day after treatment (AUC, 0.93), and at 4 weeks after treatment (AUC, 0.68). Conclusion Lower levels of myo-inositol normalized by contralateral creatine within intratumoral, contralateral, and peritumoral volumes were predictive of poor survivorship and antiangiogenic treatment failure as early as before bevacizumab treatment. Adapting MR spectroscopic imaging alongside conventional MRI modalities conveys critical information regarding the biologic characteristics of tumors to help better treat individuals with recurrent glioblastoma. Clinical trial registration no. NCT02843230 © RSNA, 2021 Online supplemental material is available for this article.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Inositol/metabolism , Magnetic Resonance Spectroscopy/methods , Biomarkers, Tumor/metabolism , Female , Humans , Longitudinal Studies , Male , Middle Aged , Neoplasm Recurrence, Local , Predictive Value of Tests , Prospective Studies , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL