Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Proc Natl Acad Sci U S A ; 121(1): e2308706120, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38147649

Social anxiety disorder (SAD) is a crippling psychiatric disorder characterized by intense fear or anxiety in social situations and their avoidance. However, the underlying biology of SAD is unclear and better treatments are needed. Recently, the gut microbiota has emerged as a key regulator of both brain and behaviour, especially those related to social function. Moreover, increasing data supports a role for immune function and oxytocin signalling in social responses. To investigate whether the gut microbiota plays a causal role in modulating behaviours relevant to SAD, we transplanted the microbiota from SAD patients, which was identified by 16S rRNA sequencing to be of a differential composition compared to healthy controls, to mice. Although the mice that received the SAD microbiota had normal behaviours across a battery of tests designed to assess depression and general anxiety-like behaviours, they had a specific heightened sensitivity to social fear, a model of SAD. This distinct heightened social fear response was coupled with changes in central and peripheral immune function and oxytocin expression in the bed nucleus of the stria terminalis. This work demonstrates an interkingdom basis for social fear responses and posits the microbiome as a potential therapeutic target for SAD.


Gastrointestinal Microbiome , Phobia, Social , Humans , Animals , Mice , Gastrointestinal Microbiome/physiology , Oxytocin , RNA, Ribosomal, 16S/genetics , Fear , Anxiety/psychology
2.
Curr Opin Neurobiol ; 78: 102652, 2023 02.
Article En | MEDLINE | ID: mdl-36463579

There is growing appreciation of key roles of the gut microbiota in maintaining homeostasis and influencing brain and behaviour at critical windows across the lifespan. Mounting evidence suggests that communication between the gut and the brain could be the key to understanding multiple neuropsychiatric disorders, with the immune system coming to the forefront as an important mechanistic mediator. Throughout the lifespan, the immune system exchanges continuous reciprocal signals with the central nervous system. Intestinal microbial cues alter immune mediators with consequences for host neurophysiology and behaviour. Several factors challenge the gut microbiota composition, which in response release molecules with neuro- and immuno-active potential that are crucial for adequate neuro-immune interactions. In this review, multiple factors contributing to the upkeep of the fine balance between health and disease of these systems are discussed, and we elucidate the potential mechanistic implications for the gut microbiota inputs on host brain and behaviour across the lifespan.


Gastrointestinal Microbiome , Microbiota , Longevity , Brain/physiology , Gastrointestinal Microbiome/physiology , Neuroimmunomodulation
3.
Mol Psychiatry ; 27(12): 4928-4938, 2022 12.
Article En | MEDLINE | ID: mdl-36104438

Stress-related psychiatric disorders such as depression are among the leading causes of morbidity and mortality. Considering that many individuals fail to respond to currently available antidepressant drugs, there is a need for antidepressants with novel mechanisms. Polymorphisms in the gene encoding FK506-binding protein 51 (FKBP51), a co-chaperone of the glucocorticoid receptor, have been linked to susceptibility to stress-related psychiatric disorders. Whether this protein can be targeted for their treatment remains largely unexplored. The aim of this work was to investigate whether inhibition of FKBP51 with SAFit2, a novel selective inhibitor, promotes hippocampal neuron outgrowth and neurogenesis in vitro and stress resilience in vivo in a mouse model of chronic psychosocial stress. Primary hippocampal neuronal cultures or hippocampal neural progenitor cells (NPCs) were treated with SAFit2 and neuronal differentiation and cell proliferation were analyzed. Male C57BL/6 mice were administered SAFit2 while concurrently undergoing a chronic stress paradigm comprising of intermittent social defeat and overcrowding, and anxiety and depressive -related behaviors were evaluated. SAFit2 increased neurite outgrowth and number of branch points to a greater extent than brain derived neurotrophic factor (BDNF) in primary hippocampal neuronal cultures. SAFit2 increased hippocampal NPC neurogenesis and increased neurite complexity and length of these differentiated neurons. In vivo, chronic SAFit2 administration prevented stress-induced social avoidance, decreased anxiety in the novelty-induced hypophagia test, and prevented stress-induced anxiety in the open field but did not alter adult hippocampal neurogenesis in stressed animals. These data warrant further exploration of inhibition of FKBP51 as a strategy to treat stress-related disorders.


Hippocampus , Resilience, Psychological , Stress, Psychological , Tacrolimus Binding Proteins , Animals , Male , Mice , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Hippocampus/metabolism , Mice, Inbred C57BL , Neurogenesis/drug effects , Resilience, Psychological/drug effects , Stress, Psychological/metabolism , Tacrolimus Binding Proteins/antagonists & inhibitors , Tacrolimus Binding Proteins/metabolism
4.
Neurosci Biobehav Rev ; 135: 104555, 2022 04.
Article En | MEDLINE | ID: mdl-35122781

There has been a significant increase in Caesarean section (C-section) births worldwide over the past two decades and although it can be a life-saving procedure, the enduring effects on host physiology are now undergoing further scrutiny. Indeed, epidemiological data have linked C-section birth with multiple immune, metabolic and neuropsychiatric diseases. Birth by C-section is known to alter the colonisation of the neonatal gut microbiota (with C-section delivered infants lacking vaginal microbiota associated with passing along the birth canal), which in turn can impact the development and maintenance of many important biological systems. Appropriate animal models are key to disentangling the role of missing microbes in brain health and disease in C-section births. In this review of preclinical studies, we interrogate the effects of C-section birth on the development (and maintenance) of several biological systems and we discuss the involvement of the gut microbiome on C-section-related alterations.


Gastrointestinal Microbiome , Microbiota , Animals , Cesarean Section , Delivery, Obstetric , Female , Gastrointestinal Microbiome/physiology , Humans , Models, Animal , Pregnancy
5.
Nutrients ; 13(2)2021 Jan 28.
Article En | MEDLINE | ID: mdl-33525617

Microbes colonize the human body during the first moments of life and coexist with the host throughout the lifespan. Intestinal microbiota and their metabolites aid in the programming of important bodily systems such as the immune and the central nervous system during critical temporal windows of development, with possible structural and functional implications throughout the lifespan. These critical developmental windows perinatally (during the first 1000 days) are susceptible timepoints for insults that can endure long lasting effects on the microbiota-gut-brain axis. Environmental and parental factors like host genetics, mental health, nutrition, delivery and feeding mode, exposure to antibiotics, immune activation and microbiota composition antenatally, are all factors that are able to modulate the microbiota composition of mother and infant and may thus regulate important bodily functions. Among all these factors, early life nutrition plays a pivotal role in perinatal programming and in the modulation of offspring microbiota from birth throughout lifespan. This review aims to present current data on the impact of early life nutrition and microbiota priming of important bodily systems and all the factors influencing the microbial coexistence with the host during early life development.


Brain/physiology , Gastrointestinal Microbiome , Gastrointestinal Tract/physiology , Nutritional Status , Humans , Infant , Malnutrition/microbiology , Nervous System/growth & development
...