Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
J Appl Toxicol ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654465

Thiazolidinediones (TZDs) (e.g. pioglitazone and rosiglitazone), known insulin sensitiser agents for type II diabetes mellitus, exhibit controversial effects on cardiac tissue. Despite consensus on their association with increased heart failure risk, limiting TZD use in diabetes management, the underlying mechanisms remain uncharacterised. Herein, we report a comprehensive in vitro investigation utilising a novel toxicoproteomics pipeline coupled with cytotoxicity assays in human adult cardiomyocytes to elucidate mechanistic insights into TZD cardiotoxicity. The cytotoxicity assay findings showed a significant loss of mitochondrial adenosine triphosphate production upon exposure to either TZD agents, which may underpin TZD cardiotoxicity. Our toxicoproteomics analysis revealed that mitochondrial dysfunction primarily stems from oxidative phosphorylation impairment, with distinct signalling mechanisms observed for both agents. The type of cell death differed strikingly between the two agents, with rosiglitazone exhibiting features of caspase-dependent apoptosis and pioglitazone implicating mitochondrial-mediated necroptosis, as evidenced by the protein upregulation in the phosphoglycerate mutase family 5-dynamin-related protein 1 axis. Furthermore, our analysis revealed additional mechanistic aspects of cardiotoxicity, showcasing drug specificity. The downregulation of various proteins involved in protein machinery and protein processing in the endoplasmic reticulum was observed in rosiglitazone-treated cells, implicating proteostasis in the rosiglitazone cardiotoxicity. Regarding pioglitazone, the findings suggested the potential activation of the interplay between the complement and coagulation systems and the disruption of the cytoskeletal architecture, which was primarily mediated through the integrin-signalling pathways responsible for pioglitazone-induced myocardial contractile failure. Collectively, this study unlocks substantial mechanistic insight into TZD cardiotoxicity, providing the rationale for future optimisation of antidiabetic therapies.

2.
Vaccines (Basel) ; 12(3)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38543916

In this study, we consider the influence of biological sex-specific immune responses on the assessment of mRNA vaccines in pre-clinical murine studies. Recognising the established disparities in immune function attributed to genetic and hormonal differences between individuals of different biological sexes, we compared the mRNA expression and immune responses in mice of both biological sexes after intramuscular injection with mRNA incorporated within lipid nanoparticles. Regarding mRNA expression, no significant difference in protein (luciferase) expression at the injection site was observed between female and male mice following intramuscular administration; however, we found that female BALB/c mice exhibit significantly greater total IgG responses across the concentration range of mRNA lipid nanoparticles (LNPs) in comparison to their male counterparts. This study not only contributes to the scientific understanding of mRNA vaccine evaluation but also emphasizes the importance of considering biological sex in vaccine study designs during pre-clinical evaluation in murine studies.

3.
Metabolomics ; 20(2): 24, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38393619

INTRODUCTION: Thiazolidinediones (TZDs), represented by pioglitazone and rosiglitazone, are a class of cost-effective oral antidiabetic agents posing a marginal hypoglycaemia risk. Nevertheless, observations of heart failure have hindered the clinical use of both therapies. OBJECTIVE: Since the mechanism of TZD-induced heart failure remains largely uncharacterised, this study aimed to explore the as-yet-unidentified mechanisms underpinning TZD cardiotoxicity using a toxicometabolomics approach. METHODS: The present investigation included an untargeted liquid chromatography-mass spectrometry-based toxicometabolomics pipeline, followed by multivariate statistics and pathway analyses to elucidate the mechanism(s)of TZD-induced cardiotoxicity using AC16 human cardiomyocytes as a model, and to identify the prognostic features associated with such effects. RESULTS: Acute administration of either TZD agent resulted in a significant modulation in carnitine content, reflecting potential disruption of the mitochondrial carnitine shuttle. Furthermore, perturbations were noted in purine metabolism and amino acid fingerprints, strongly conveying aberrations in cardiac energetics associated with TZD usage. Analysis of our findings also highlighted alterations in polyamine (spermine and spermidine) and amino acid (L-tyrosine and valine) metabolism, known modulators of cardiac hypertrophy, suggesting a potential link to TZD cardiotoxicity that necessitates further research. In addition, this comprehensive study identified two groupings - (i) valine and creatine, and (ii) L-tryptophan and L-methionine - that were significantly enriched in the above-mentioned mechanisms, emerging as potential fingerprint biomarkers for pioglitazone and rosiglitazone cardiotoxicity, respectively. CONCLUSION: These findings demonstrate the utility of toxicometabolomics in elaborating on mechanisms of drug toxicity and identifying potential biomarkers, thus encouraging its application in the toxicological sciences. (245 words).


Diabetes Mellitus, Type 2 , Heart Failure , Thiazolidinediones , Humans , Rosiglitazone/therapeutic use , Pioglitazone , Myocytes, Cardiac , Cardiotoxicity/complications , Cardiotoxicity/drug therapy , Diabetes Mellitus, Type 2/complications , Metabolomics , Thiazolidinediones/toxicity , Heart Failure/chemically induced , Amino Acids , Biomarkers , Carnitine , Valine
4.
J Pharm Sci ; 2023 Dec 30.
Article En | MEDLINE | ID: mdl-38163549

Nanoparticles are increasingly implemented in biomedical applications, including the diagnosis and treatment of disease. When exposed to complex biological media, nanoparticles spontaneously interact with their surrounding environment, leading to the surface-adsorption of small and bio- macromolecules- termed the "corona". Corona composition is governed by nanoparticle properties and incubation parameters. While the focus of most studies is on the protein signature of the nanoparticle corona, the impact of experimental protocols on nanoparticle size in the presence of complex biological media, and the impact of nanoparticle recovery from biological media has not yet been reported. Here using a non-degradable robust model, we show how centrifugation-resuspension protocols used for the isolation of nanoparticles from incubation media, incubation duration and shear flow conditions alter nanoparticle parameters including particle size, zeta potential and total protein content. Our results show significant changes in nanoparticle size following exposure to media containing protein under different flow conditions, which also altered the composition of surface-adsorbed proteins profiled by SDS-PAGE. Our in situ analysis of nanoparticle size in media containing protein using particle tracking analysis highlights that centrifugation-resuspension is disruptive to agglomerates that are spontaneously formed in protein containing media, highlighting the need for in situ analytical methods that do not alter the intermediates formed following nanoparticle exposure to biological media. Nanomedicines are mostly intended for parenteral administration, and our findings show that parameters such as shear flow can significantly alter nanoparticle physicochemical parameters. Overall, we show that the centrifugation-resuspension isolation of nanoparticles from media significantly alters particle parameters in addition to the overall protein composition of surface-adsorbed proteins. We recommend that nanoparticle characterization pipelines studying bio-nano interactions during early nanomedicine development consider biologically-relevant shear flow conditions and media composition that can significantly alter particle physical parameters and subsequent conclusions from these studies.

5.
Metabolites ; 12(11)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36422250

Liquid chromatography coupled with mass spectrometry (LC-MS) metabolomic approaches are widely used to investigate underlying pathogenesis of gastrointestinal disease and mechanism of action of treatments. However, there is an unmet requirement to assess faecal metabolite extraction methods for large-scale metabolomics studies. Current methods often rely on biphasic extractions using harmful halogenated solvents, making automation and large-scale studies challenging. The present study reports an optimised monophasic faecal extraction protocol that is suitable for untargeted and targeted LC-MS analyses. The impact of several experimental parameters, including sample weight, extraction solvent, cellular disruption method, and sample-to-solvent ratio, were investigated. It is suggested that a 50 mg freeze-dried faecal sample should be used in a methanol extraction (1:20) using bead beating as the means of cell disruption. This is revealed by a significant increase in number of metabolites detected, improved signal intensity, and wide metabolic coverage given by each of the above extraction parameters. Finally, we addressed the applicability of the method on faecal samples from patients with Crohn's disease (CD) and coeliac disease (CoD), two distinct chronic gastrointestinal diseases involving metabolic perturbations. Untargeted and targeted metabolomic analysis demonstrated the ability of the developed method to detect and stratify metabolites extracted from patient groups and healthy controls (HC), highlighting characteristic changes in the faecal metabolome according to disease. The method developed is, therefore, suitable for the analysis of patients with gastrointestinal disease and can be used to detect and distinguish differences in the metabolomes of CD, CoD, and HC.

6.
Biol Sex Differ ; 13(1): 61, 2022 10 23.
Article En | MEDLINE | ID: mdl-36274154

BACKGROUND: Bile acids are known to be genotoxic and contribute to colorectal cancer (CRC). However, the link between CRC tumor bile acids to tumor location, patient sex, microbiome, immune-regulatory cells, and prognosis is not clear. METHODS: We conducted bile acid analysis using targeted liquid chromatography-mass spectrometry (LC-MS) on tumor tissues from CRC patients (n = 228) with survival analysis. We performed quantitative immunofluorescence (QIF) on tumors to examine immune cells. RESULTS: Twelve of the bile acids were significantly higher in right-sided colon tumors compared to left-sided colon tumors. Furthermore, in male patients, right-sided colon tumors had elevated secondary bile acids (deoxycholic acid, lithocholic acid, ursodeoxycholic acid) compared to left-sided colon tumors, but this difference between tumors by location was not observed in females. A high ratio of glycoursodeoxycholic to ursodeoxycholic was associated with 5-year overall survival (HR = 3.76, 95% CI = 1.17 to 12.1, P = 0.026), and a high ratio of glycochenodeoxycholic acid to chenodeoxycholic acid was associated with 5-year recurrence-free survival (HR = 3.61, 95% CI = 1.10 to 11.84, P = 0.034). We also show correlation between these bile acids and FoxP3 + T regulatory cells. CONCLUSIONS: This study revealed that the distribution of bile acid abundances in colon cancer patients is tumor location-, age- and sex-specific, and are linked to patient prognosis. This study provides new implications for targeting bile acid metabolism, microbiome, and immune responses for colon cancer patients by taking into account primary tumor location and sex.


Colonic Neoplasms , Colorectal Neoplasms , Female , Humans , Male , Bile Acids and Salts , Ursodeoxycholic Acid/therapeutic use , Ursodeoxycholic Acid/metabolism , Glycochenodeoxycholic Acid , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Lithocholic Acid/metabolism , Chenodeoxycholic Acid/metabolism , Sex Distribution , Forkhead Transcription Factors
7.
Cancers (Basel) ; 14(15)2022 Jul 27.
Article En | MEDLINE | ID: mdl-35954325

Metabolic reprogramming and genomic instability are key hallmarks of cancer, the combined analysis of which has gained recent popularity. Given the emerging evidence indicating the role of oncometabolites in DNA damage repair and its routine use in breast cancer treatment, it is timely to fingerprint the impact of olaparib treatment in cellular metabolism. Here, we report the biomolecular response of breast cancer cell lines with DNA damage repair defects to olaparib exposure. Following evaluation of olaparib sensitivity in breast cancer cell lines, we immunoprobed DNA double strand break foci and evaluated changes in cellular metabolism at various olaparib treatment doses using untargeted mass spectrometry-based metabolomics analysis. Following identification of altered features, we performed pathway enrichment analysis to measure key metabolic changes occurring in response to olaparib treatment. We show a cell-line-dependent response to olaparib exposure, and an increased susceptibility to DNA damage foci accumulation in triple-negative breast cancer cell lines. Metabolic changes in response to olaparib treatment were cell-line and dose-dependent, where we predominantly observed metabolic reprogramming of glutamine-derived amino acids and lipids metabolism. Our work demonstrates the effectiveness of combining molecular biology and metabolomics studies for the comprehensive characterisation of cell lines with different genetic profiles. Follow-on studies are needed to map the baseline metabolism of breast cancer cells and their unique response to drug treatment. Fused with genomic and transcriptomics data, such readout can be used to identify key oncometabolites and inform the rationale for the design of novel drugs or chemotherapy combinations.

8.
Cell Rep ; 40(7): 111198, 2022 08 16.
Article En | MEDLINE | ID: mdl-35977476

The relationship between nutrient starvation and mitochondrial dynamics is poorly understood. We find that cells facing amino acid starvation display clear mitochondrial fusion as a means to evade mitophagy. Surprisingly, further supplementation of glutamine (Q), leucine (L), and arginine (R) did not reverse, but produced stronger mitochondrial hyperfusion. Interestingly, the hyperfusion response to Q + L + R was dependent upon mitochondrial fusion proteins Mfn1 and Opa1 but was independent of MTORC1. Metabolite profiling indicates that Q + L + R addback replenishes amino acid and nucleotide pools. Inhibition of fumarate hydratase, glutaminolysis, or inosine monophosphate dehydrogenase all block Q + L + R-dependent mitochondrial hyperfusion, which suggests critical roles for the tricarboxylic acid (TCA) cycle and purine biosynthesis in this response. Metabolic tracer analyses further support the idea that supplemented Q promotes purine biosynthesis by serving as a donor of amine groups. We thus describe a metabolic mechanism for direct sensing of cellular amino acids to control mitochondrial fusion and cell fate.


Amino Acids , Mitochondrial Dynamics , Amines/metabolism , Amino Acids/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Purines/metabolism
9.
BMC Cancer ; 22(1): 874, 2022 Aug 10.
Article En | MEDLINE | ID: mdl-35948941

Breast cancer, comprising of several sub-phenotypes, is a leading cause of female cancer-related mortality in the UK and accounts for 15% of all cancer cases. Chemoresistant sub phenotypes of breast cancer remain a particular challenge. However, the rapidly-growing availability of clinical datasets, presents the scope to underpin a data-driven precision medicine-based approach exploring new targets for diagnostic and therapeutic interventions.We report the application of a bioinformatics-based approach probing the expression and prognostic role of Karyopherin-2 alpha (KPNA2) in breast cancer prognosis. Aberrant KPNA2 overexpression is directly correlated with aggressive tumour phenotypes and poor patient survival outcomes. We examined the existing clinical data available on a range of commonly occurring mutations of KPNA2 and their correlation with patient survival.Our analysis of clinical gene expression datasets show that KPNA2 is frequently amplified in breast cancer, with differences in expression levels observed as a function of patient age and clinicopathologic parameters. We also found that aberrant KPNA2 overexpression is directly correlated with poor patient prognosis, warranting further investigation of KPNA2 as an actionable target for patient stratification or the design of novel chemotherapy agents.In the era of big data, the wealth of datasets available in the public domain can be used to underpin proof of concept studies evaluating the biomolecular pathways implicated in chemotherapy resistance in breast cancer.


Neoplasms , alpha Karyopherins , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Computational Biology , Female , Humans , Mutation , Prognosis , alpha Karyopherins/genetics , alpha Karyopherins/metabolism
10.
Altern Lab Anim ; 50(4): 282-292, 2022 Jul.
Article En | MEDLINE | ID: mdl-35765262

Colorectal cancer (CRC) is a global cause of cancer-related mortality driven by genetic and environmental factors which influence therapeutic outcomes. The emergence of next-generation sequencing technologies enables the rapid and extensive collection and curation of genetic data for each cancer type into clinical gene expression biobanks. We report the application of bioinformatics tools for investigating the expression patterns and prognostic significance of three genes that are commonly dysregulated in colon cancer: adenomatous polyposis coli (APC); B-Raf proto-oncogene (BRAF); and Kirsten rat sarcoma viral oncogene homologue (KRAS). Through the use of bioinformatics tools, we show the patterns of APC, BRAF and KRAS genetic alterations and their role in patient prognosis. Our results show mutation types, the frequency of mutations, tumour anatomical location and differential expression patterns for APC, BRAF and KRAS for colorectal tumour and matched healthy tissue. The prognostic value of APC, BRAF and KRAS genetic alterations was investigated as a function of their expression levels in CRC. In the era of precision medicine, with significant advancements in biobanking and data curation, there is significant scope to use existing clinical data sets for evaluating the role of mutational drivers in carcinogenesis. This approach offers the potential for studying combinations of less well-known genes and the discovery of novel biomarkers, or for studying the association between various effector proteins and pathways.


Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Biological Specimen Banks , Computational Biology , Gene Expression , Humans , Mutation , Proto-Oncogene Proteins p21(ras)
11.
Int J Mol Sci ; 23(9)2022 May 09.
Article En | MEDLINE | ID: mdl-35563669

BACKGROUND: Capsaicin, the hot pepper agent, produces burning followed by desensitization. To treat localized itch or pain with minimal burning, low capsaicin concentrations can be repeatedly applied. We hypothesized that alternatively controlled release of capsaicin from poly(lactic-co-glycolic acid) (PLGA) nanoparticles desensitizes superficially terminating nociceptors, reducing burning. METHODS: Capsaicin-loaded PLGA nanoparticles were prepared (single-emulsion solvent evaporation) and characterized (size, morphology, capsaicin loading, encapsulation efficiency, in vitro release profile). Capsaicin-PLGA nanoparticles were applied to murine skin and evaluated in healthy human participants (n = 21) for 4 days under blinded conditions, and itch and nociceptive sensations evoked by mechanical, heat stimuli and pruritogens cowhage, ß-alanine, BAM8-22 and histamine were evaluated. RESULTS: Nanoparticles (loading: 58 µg capsaicin/mg) released in vitro 23% capsaicin within the first hour and had complete release at 72 h. In mice, 24 h post-application Capsaicin-PLGA nanoparticles penetrated the dermis and led to decreased nociceptive behavioral responses to heat and mechanical stimulation (desensitization). Application in humans produced a weak to moderate burning, dissipating after 3 h. A loss of heat pain up to 2 weeks was observed. After capsaicin nanoparticles, itch and nociceptive sensations were reduced in response to pruritogens cowhage, ß-alanine or BAM8-22, but were normal to histamine. CONCLUSIONS: Capsaicin nanoparticles could be useful in reducing pain and itch associated with pruritic diseases that are histamine-independent.


Capsaicin , Nanoparticles , Animals , Capsaicin/pharmacology , Glycols , Histamine , Hot Temperature , Humans , Mice , Pain/drug therapy , Pruritus/chemically induced , Pruritus/drug therapy , beta-Alanine
12.
Pharmaceutics ; 14(1)2022 Jan 11.
Article En | MEDLINE | ID: mdl-35057063

With the launch of the UK Academy of Pharmaceutical Sciences Advanced Therapy Medicinal Products Focus Group in late 2020, a webinar series reviewing the current and emerging trends in cell and gene therapy was held virtually in May 2021. This webinar series was timely given the recent withdrawal of the United Kingdom from the European Union and the global COVID-19 pandemic impacting all sectors of the pharmaceutical sciences research landscape globally and in the UK. Delegates from the academic, industry, regulatory and NHS sectors attended the session where challenges and opportunities in the development and clinical implementation of cell and gene therapies were discussed. Globally, the cell and gene therapy market has reached a value of 4.3 billion dollars in 2020, having increased at a compound annual growth rate of 25.5% since 2015. This webinar series captured all the major developments in this rapidly evolving area and highlighted emerging concepts warranting cross-sector efforts from across the community in the future.

13.
JCI Insight ; 6(14)2021 07 22.
Article En | MEDLINE | ID: mdl-34128837

The blood-brain barrier (BBB) prevents antibodies from penetrating the CNS and limits conventional antibody-based approaches to brain tumors. We now show that ENT2, a transporter that regulates nucleoside flux at the BBB, may offer an unexpected path to circumventing this barrier to allow targeting of brain tumors with an anti-DNA autoantibody. Deoxymab-1 (DX1) is a DNA-damaging autoantibody that localizes to tumors and is synthetically lethal to cancer cells with defects in the DNA damage response. We found that DX1 penetrated brain endothelial cells and crossed the BBB, and mechanistic studies identify ENT2 as the key transporter. In efficacy studies, DX1 crosses the BBB to suppress orthotopic glioblastoma and breast cancer brain metastases. ENT2-linked transport of autoantibodies across the BBB has potential to be exploited in brain tumor immunotherapy, and its discovery raises hypotheses on actionable mechanisms of CNS penetration by neurotoxic autoantibodies in CNS lupus.


Antibodies, Antinuclear/pharmacology , Autoantibodies/pharmacology , Brain Neoplasms/drug therapy , Equilibrative-Nucleoside Transporter 2/metabolism , Glioblastoma/drug therapy , Animals , Antibodies, Antinuclear/therapeutic use , Autoantibodies/therapeutic use , Blood-Brain Barrier/metabolism , Brain Neoplasms/pathology , CHO Cells , Cell Line , Cricetulus , Endothelial Cells , Equilibrative-Nucleoside Transporter 2/genetics , Gene Knockdown Techniques , Glioblastoma/pathology , Humans , Mice , Xenograft Model Antitumor Assays
14.
Metabolites ; 10(6)2020 Jun 19.
Article En | MEDLINE | ID: mdl-32575361

The progress in the discovery and validation of metabolite biomarkers for the detection of colorectal cancer (CRC) has been hampered by the lack of reproducibility between study cohorts. The majority of discovery-phase biomarker studies have used patient blood samples to identify disease-related metabolites, but this pre-validation phase is confounded by non-specific disease influences on the metabolome. We therefore propose that metabolite biomarker discovery would have greater success and higher reproducibility for CRC if the discovery phase was conducted in tumor tissues, to find metabolites that have higher specificity to the metabolic consequences of the disease, that are then validated in blood samples. This would thereby eliminate any non-tumor and/or body response effects to the disease. In this study, we performed comprehensive untargeted metabolomics analyses on normal (adjacent) colon and tumor tissues from CRC patients, revealing tumor tissue-specific biomarkers (n = 39/group). We identified 28 highly discriminatory tumor tissue metabolite biomarkers of CRC by orthogonal partial least-squares discriminant analysis (OPLS-DA) and univariate analyses (VIP > 1.5, p < 0.05). A stepwise selection procedure was used to identify nine metabolites that were the most predictive of CRC with areas under the curve (AUCs) of >0.96, using various models. We further identified five biomarkers that were specific to the anatomic location of tumors in the colon (n = 236). The combination of these five metabolites (S-adenosyl-L-homocysteine, formylmethionine, fucose 1-phosphate, lactate, and phenylalanine) demonstrated high differentiative capability for left- and right-sided colon cancers at stage I by internal cross-validation (AUC = 0.804, 95% confidence interval, CI 0.670-0.940). This study thus revealed nine discriminatory biomarkers of CRC that are now poised for external validation in a future independent cohort of samples. We also discovered a discrete metabolic signature to determine the anatomic location of the tumor at the earliest stage, thus potentially providing clinicians a means to identify individuals that could be triaged for additional screening regimens.

15.
Pharm Res ; 37(6): 97, 2020 May 14.
Article En | MEDLINE | ID: mdl-32409985

PURPOSE: Subcutaneously or intramuscularly administered biodegradable microsphere formulations have been successfully exploited in the management of chronic conditions for over two decades, yet mechanistic understanding of the impact of formulation attributes on in vivo absorption rate from such systems is still in its infancy. METHODS: Suspension formulation physicochemical attributes may impact particulate deposition in subcutaneous (s.c.) tissue. Hence, the utility of synchrotron X-ray micro-computed tomography (µCT) for assessment of spatial distribution of suspension formulation components (PLG microspheres and vehicle) was evaluated in a porcine s.c. tissue model. Optical imaging of dyed vehicle and subsequent microscopic assessment of microsphere deposition was performed in parallel to compare the two approaches. RESULTS: Our findings demonstrate that synchrotron µCT can be applied to the assessment of microsphere and vehicle distribution in s.c. tissue, and that microspheres can also be visualised in the absence of contrast agent using this approach. The technique was deemed superior to optical imaging of macrotomy for the characterisation of microsphere deposition owing to its non-invasive nature and relatively rapid data acquisition time. CONCLUSIONS: The method outlined in this study provides a proof of concept feasibility for µCT application to determining the vehicle and suspended PLG microspheres fate following s.c. injection. A potential application for our findings is understanding the impact of injection, device and formulation variables on initial and temporal depot geometry in pre-clinical or ex-vivo models that can inform product design. Graphical abstract.


Biocompatible Materials/chemistry , Contrast Media/chemistry , Microspheres , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Suspensions/chemistry , Tomography, X-Ray Computed/methods , Animals , Drug Compounding , Imaging, Three-Dimensional , Injections, Subcutaneous , Radiographic Image Enhancement , Swine , Synchrotrons , Tissue Scaffolds/chemistry
16.
Sci Rep ; 10(1): 4905, 2020 03 17.
Article En | MEDLINE | ID: mdl-32184446

Women have a lower incidence of colorectal cancer (CRC) than men, however, they have a higher incidence of right-sided colon cancer (RCC). This is of concern as patients with RCC have the poorest clinical outcomes among all CRC patients. Aberrant metabolism is a known hallmark and therapeutic target for cancer. We propose that metabolic subphenotypes exist between CRCs due to intertumoral molecular and genomic variation, and differences in environmental milieu of the colon which vary between the sexes. Metabolomics analysis of patient colon tumors (n = 197) and normal tissues (n = 39) revealed sex-specific metabolic subphenotypes dependent on anatomic location. Tumors from women with RCC were nutrient-deplete, showing enhanced energy production to fuel asparagine synthesis and amino acid uptake. The clinical importance of our findings were further investigated in an independent data set from The Cancer Genomic Atlas, and demonstrated that high asparagine synthetase (ASNS) expression correlated with poorer survival for women. This is the first study to show a unique, nutrient-deplete metabolic subphenotype in women with RCC, with implications for tumor progression and outcomes in CRC patients.


Colonic Neoplasms/metabolism , Biomarkers, Tumor , Colorectal Neoplasms/metabolism , Humans , Mass Spectrometry
17.
Nat Commun ; 10(1): 5027, 2019 11 05.
Article En | MEDLINE | ID: mdl-31690722

Global ageing poses a substantial economic burden on health and social care costs. Enabling a greater proportion of older people to stay healthy for longer is key to the future sustainability of health, social and economic policy. Frailty and associated decrease in resilience plays a central role in poor health in later life. In this study, we present a population level assessment of the metabolic phenotype associated with frailty. Analysis of serum from 1191 older individuals (aged between 56 and 84 years old) and subsequent longitudinal validation (on 786 subjects) was carried out using liquid and gas chromatography-mass spectrometry metabolomics and stratified across a frailty index designed to quantitatively summarize vulnerability. Through multivariate regression and network modelling and mROC modeling we identified 12 significant metabolites (including three tocotrienols and six carnitines) that differentiate frail and non-frail phenotypes. Our study provides evidence that the dysregulation of carnitine shuttle and vitamin E pathways play a role in the risk of frailty.


Carnitine/metabolism , Energy Metabolism , Frailty/metabolism , Vitamin E/metabolism , Aged , Aging/metabolism , Confounding Factors, Epidemiologic , Discriminant Analysis , Female , Humans , Male , Metabolic Networks and Pathways , Middle Aged , Phenotype , Principal Component Analysis , Reproducibility of Results
18.
Methods Mol Biol ; 2039: 141-155, 2019.
Article En | MEDLINE | ID: mdl-31342425

Small proteinaceous oligomeric species contribute to the formation of larger aggregates, a phenomenon that is of direct relevance to the characterization of protein aggregation in biopharmaceuticals and understanding the underlying processes contributing to neurodegenerative diseases.The ability to monitor in situ oligomerization and aggregation processes renders imaging and image analysis an attractive approach for gaining a mechanistic insight into early processes contributing to the formation of larger aggregates in disease models and biologics. The combination of image analysis tools enables the detection of both oligomeric and larger aggregate subtype in contrast to conventional kinetic-based approaches that lack the ability to resolve dimers from monomeric moieties in samples containing mixed populations.In this chapter, we describe the process for confocal time series image acquisition for monitoring the in situ loss of monomers, and the subsequent analysis pipeline using spatial intensity distribution analysis (SpIDA) to evaluate oligomer content.


Proteins/chemistry , Biological Products/chemistry , Green Fluorescent Proteins/chemistry , Kinetics , Neurodegenerative Diseases/metabolism , Protein Aggregates/physiology
19.
Biochem Biophys Res Commun ; 496(3): 858-864, 2018 02 12.
Article En | MEDLINE | ID: mdl-29374508

A key challenge in the development of novel chemotherapeutics is the design of molecules capable of selective toxicity to cancer cells. Antibodies have greater target specificity compared to small molecule drugs, but most are unable to penetrate cells, and predominantly target extracellular antigens. A nuclear-penetrating anti-DNA autoantibody isolated from the MRL/lpr lupus mouse model, 3E10, preferentially localizes to tumors, inhibits DNA repair, and selectively kills cancer cells with defects in DNA repair. A murine divalent single chain variable fragment of 3E10 with mutations for improved DNA binding affinity, 3E10 (D31N) di-scFv, has previously been produced in P. pastoris and yielded promising pre-clinical findings, but is unsuitable for clinical testing. The present study reports the design, expression and testing of a panel of humanized 3E10 (D31N) di-scFvs, some of which contain CDR substitution. These variants were expressed in a modified CHO system and evaluated for their physicochemical attributes and ability to penetrate nuclei to selectively cause DNA damage accumulation in and kill cancer cells with DNA repair defects. Secondary structure was conserved and most variants retained the key characteristics of the murine 3E10 (D31N) di-scFv produced in P. pastoris. Moreover, several variants with CDR substitutions outperformed the murine prototype. In conclusion, we have designed several humanized variants of 3E10 (D31N) di-scFv that have potential for application as monotherapy or conjugates for targeted nuclear drug delivery.


Antibodies, Antinuclear/genetics , Antibodies, Antinuclear/immunology , Autoantibodies/genetics , Autoantibodies/immunology , DNA/genetics , DNA/immunology , Protein Engineering/methods , Animals , Antibodies, Antinuclear/therapeutic use , Autoantibodies/therapeutic use , DNA Damage/immunology , Mice
20.
Cancer Metab ; 5: 9, 2017.
Article En | MEDLINE | ID: mdl-29093815

BACKGROUND: Cancer cells that enter the metastatic cascade require traits that allow them to survive within the circulation and colonize distant organ sites. As disseminating cancer cells adapt to their changing microenvironments, they also modify their metabolism and metabolite production. METHODS: A mouse xenograft model of spontaneous tumor metastasis was used to determine the metabolic rewiring that occurs between primary cancers and their metastases. An "autonomous" mass spectrometry-based untargeted metabolomic workflow with integrative metabolic pathway analysis revealed a number of differentially regulated metabolites in primary mammary fat pad (MFP) tumors compared to microdissected paired lung metastases. The study was further extended to analyze metabolites in paired normal tissues which determined the potential influence of metabolites from the microenvironment. RESULTS: Metabolomic analysis revealed that multiple metabolites were increased in metastases, including cholesterol sulfate and phospholipids (phosphatidylglycerols and phosphatidylethanolamine). Metabolite analysis of normal lung tissue in the mouse model also revealed increased levels of these metabolites compared to tissues from normal MFP and primary MFP tumors, indicating potential extracellular uptake by cancer cells in lung metastases. These results indicate a potential functional importance of cholesterol sulfate and phospholipids in propagating metastasis. In addition, metabolites involved in DNA/RNA synthesis and the TCA cycle were decreased in lung metastases compared to primary MFP tumors. CONCLUSIONS: Using an integrated metabolomic workflow, this study identified a link between cholesterol sulfate and phospholipids, metabolic characteristics of the metastatic niche, and the capacity of tumor cells to colonize distant sites.

...