Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
J Alzheimers Dis ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38848176

Background: The NIA-AA Research Framework on Alzheimer's disease (AD) proposes a transitional stage (stage 2) characterized by subtle cognitive decline, subjective cognitive decline (SCD) and mild neurobehavioral symptoms (NPS). Objective: To identify participant clusters based on stage 2 features and assess their association with amyloid positivity in cognitively unimpaired individuals. Methods: We included baseline data of N = 338 cognitively unimpaired participants from the DELCODE cohort with data on cerebrospinal fluid biomarkers for AD. Classification into the AD continuum (i.e., amyloid positivity, A+) was based on Aß42/40 status. Neuropsychological test data were used to assess subtle objective cognitive dysfunction (OBJ), the subjective cognitive decline interview (SCD-I) was used to detect SCD, and the Neuropsychiatric Inventory Questionnaire (NPI-Q) was used to assess NPS. A two-step cluster analysis was carried out and differences in AD biomarkers between clusters were analyzed. Results: We identified three distinct participant clusters based on presented symptoms. The highest rate of A+ participants (47.6% ) was found in a cluster characterized by both OBJ and SCD. A cluster of participants that presented with SCD and NPS (A+:26.6% ) and a cluster of participants with overall few symptoms (A+:19.7% ) showed amyloid positivity in a range that was not higher than the expected A+ rate for the age group. Across the full sample, participants with a combination of SCD and OBJ in the memory domain showed a lower Aß42/ptau181 ratio compared to those with neither SCD nor OBJ. Conclusions: The cluster characterized by participants with OBJ and concomitant SCD was enriched for amyloid pathology.

2.
Diagnostics (Basel) ; 14(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732354

Inferior frontal sulcal hyperintensities (IFSHs) on fluid-attenuated inversion recovery (FLAIR) sequences have been proposed to be indicative of glymphatic dysfunction. Replication studies in large and diverse samples are nonetheless needed to confirm them as an imaging biomarker. We investigated whether IFSHs were tied to Alzheimer's disease (AD) pathology and cognitive performance. We used data from 361 participants along the AD continuum, who were enrolled in the multicentre DELCODE study. The IFSHs were rated visually based on FLAIR magnetic resonance imaging. We performed ordinal regression to examine the relationship between the IFSHs and cerebrospinal fluid-derived amyloid positivity and tau positivity (Aß42/40 ratio ≤ 0.08; pTau181 ≥ 73.65 pg/mL) and linear regression to examine the relationship between cognitive performance (i.e., Mini-Mental State Examination and global cognitive and domain-specific performance) and the IFSHs. We controlled the models for age, sex, years of education, and history of hypertension. The IFSH scores were higher in those participants with amyloid positivity (OR: 1.95, 95% CI: 1.05-3.59) but not tau positivity (OR: 1.12, 95% CI: 0.57-2.18). The IFSH scores were higher in older participants (OR: 1.05, 95% CI: 1.00-1.10) and lower in males compared to females (OR: 0.44, 95% CI: 0.26-0.76). We did not find sufficient evidence linking the IFSH scores with cognitive performance after correcting for demographics and AD biomarker positivity. IFSHs may reflect the aberrant accumulation of amyloid ß beyond age.

3.
Invest Radiol ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652067

OBJECTIVES: Impaired perivascular clearance has been suggested as a contributing factor to the pathogenesis of Alzheimer disease (AD). However, it remains unresolved when the anatomy of the perivascular space (PVS) is altered during AD progression. Therefore, this study investigates the association between PVS volume and AD progression in cognitively unimpaired (CU) individuals, both with and without subjective cognitive decline (SCD), and in those clinically diagnosed with mild cognitive impairment (MCI) or mild AD. MATERIALS AND METHODS: A convolutional neural network was trained using manually corrected, filter-based segmentations (n = 1000) to automatically segment the PVS in the centrum semiovale from interpolated, coronal T2-weighted magnetic resonance imaging scans (n = 894). These scans were sourced from the national German Center for Neurodegenerative Diseases Longitudinal Cognitive Impairment and Dementia Study. Convolutional neural network-based segmentations and those performed by a human rater were compared in terms of segmentation volume, identified PVS clusters, as well as Dice score. The comparison revealed good segmentation quality (Pearson correlation coefficient r = 0.70 with P < 0.0001 for PVS volume, detection rate in cluster analysis = 84.3%, and Dice score = 59.0%). Subsequent multivariate linear regression analysis, adjusted for participants' age, was performed to correlate PVS volume with clinical diagnoses, disease progression, cerebrospinal fluid biomarkers, lifestyle factors, and cognitive function. Cognitive function was assessed using the Mini-Mental State Examination, the Comprehensive Neuropsychological Test Battery, and the Cognitive Subscale of the 13-Item Alzheimer's Disease Assessment Scale. RESULTS: Multivariate analysis, adjusted for age, revealed that participants with AD and MCI, but not those with SCD, had significantly higher PVS volumes compared with CU participants without SCD (P = 0.001 for each group). Furthermore, CU participants who developed incident MCI within 4.5 years after the baseline assessment showed significantly higher PVS volumes at baseline compared with those who did not progress to MCI (P = 0.03). Cognitive function was negatively correlated with PVS volume across all participant groups (P ≤ 0.005 for each). No significant correlation was found between PVS volume and any of the following parameters: cerebrospinal fluid biomarkers, sleep quality, body mass index, nicotine consumption, or alcohol abuse. CONCLUSIONS: The very early changes of PVS volume may suggest that alterations in PVS function are involved in the pathophysiology of AD. Overall, the volumetric assessment of centrum semiovale PVS represents a very early imaging biomarker for AD.

4.
Brain ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38654513

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.

5.
Alzheimers Dement (Amst) ; 16(2): e12589, 2024.
Article En | MEDLINE | ID: mdl-38666085

INTRODUCTION: Soluble amyloid beta (Aß) oligomers have been suggested as initiating Aß related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS: A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aß and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS: Across groups, highest Aß oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aß oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE Îµ4 allele carriers showed significantly higher Aß oligomer levels. No differences in tau oligomers were detected. DISCUSSION: The accumulation of Aß oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aß oligomers might have the highest therapeutic effect in these disease stages. Highlights: Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aß oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAß oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aß oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.

6.
Methods Mol Biol ; 2785: 89-104, 2024.
Article En | MEDLINE | ID: mdl-38427190

Alzheimer's disease (AD) has been characterized by widespread network disconnection among brain regions, widely overlapping with the hallmarks of the disease. Functional connectivity has been studied with an upward trend in the last two decades, predominantly in AD among other neuropsychiatric disorders, and presents a potential biomarker with various features that might provide unique contributions to foster our understanding of neural mechanisms of AD. The resting-state functional MRI (rs-fMRI) is usually used to measure the blood-oxygen-level-dependent signals that reflect the brain's functional connectivity. Nevertheless, the rs-fMRI is still underutilized, which might be due to the fairly complex acquisition and analytic methodology. In this chapter, we presented the common methods that have been applied in rs-fMRI literature, focusing on the studies on individuals in the continuum of AD. The key methodological aspects will be addressed that comprise acquiring, processing, and interpreting rs-fMRI data. More, we discussed the current and potential implications of rs-fMRI in AD.


Alzheimer Disease , Humans , Alzheimer Disease/pathology , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods
7.
Neurobiol Aging ; 136: 99-110, 2024 Apr.
Article En | MEDLINE | ID: mdl-38340637

Here, we investigated whether fractional anisotropy (FA) of hippocampus-relevant white-matter tracts mediates the association between baseline Mediterranean diet adherence (MeDiAd) and verbal episodic memory over four years. Participants were healthy older adults with and without subjective cognitive decline and patients with amnestic mild cognitive impairment from the DELCODE cohort study (n = 376; age: 71.47 ± 6.09 years; 48.7 % female). MeDiAd and diffusion data were obtained at baseline. Verbal episodic memory was assessed at baseline and four yearly follow-ups. The associations between baseline MeDiAd and white matter, and verbal episodic memory's mean and rate of change over four years were tested with latent growth curve modeling. Baseline MeDiAd was associated with verbal episodic memory four years later (95 % confidence interval, CI [0.01, 0.32]) but not with its rate of change over this period. Baseline Fornix FA mediated - and, thus, explained - that association (95 % CI [0.002, 0.09]). Fornix FA may be an appropriate response biomarker of Mediterranean diet interventions on verbal memory in older adults.


Cognitive Dysfunction , Dementia , Diet, Mediterranean , Memory, Episodic , Humans , Female , Aged , Male , Cohort Studies , Anisotropy , Diffusion Tensor Imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications
8.
J Neurol ; 271(5): 2639-2648, 2024 May.
Article En | MEDLINE | ID: mdl-38353748

BACKGROUND: Multiple system atrophy (MSA) is a complex and fatal neurodegenerative movement disorder. Understanding the comorbidities and drug therapy is crucial for MSA patients' safety and management. OBJECTIVES: To investigate the pattern of comorbidities and aspects of drug therapy in MSA patients. METHODS: Cross-sectional data of MSA patients according to Gilman et al. (2008) diagnostic criteria and control patients without neurodegenerative diseases (non-ND) were collected from German, multicenter cohorts. The prevalence of comorbidities according to WHO ICD-10 classification and drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were identified using AiDKlinik®. RESULTS: The analysis included 254 MSA and 363 age- and sex-matched non-ND control patients. MSA patients exhibited a significantly higher burden of comorbidities, in particular diseases of the genitourinary system. Also, more medications were prescribed MSA patients, resulting in a higher prevalence of polypharmacy. Importantly, the risk of potential drug-drug interactions, including severe interactions and contraindicated combinations, was elevated in MSA patients. When comparing MSA-P and MSA-C subtypes, MSA-P patients suffered more frequently from diseases of the genitourinary system and diseases of the musculoskeletal system and connective tissue. CONCLUSIONS: MSA patients face a substantial burden of comorbidities, notably in the genitourinary system. This, coupled with increased polypharmacy and potential drug interactions, highlights the complexity of managing MSA patients. Clinicians should carefully consider these factors when devising treatment strategies for MSA patients.


Comorbidity , Drug Interactions , Multiple System Atrophy , Polypharmacy , Humans , Multiple System Atrophy/epidemiology , Multiple System Atrophy/drug therapy , Cross-Sectional Studies , Male , Female , Aged , Middle Aged , Prevalence , Germany/epidemiology
9.
Alzheimers Dement (Amst) ; 16(1): e12510, 2024.
Article En | MEDLINE | ID: mdl-38213951

INTRODUCTION: We investigated the association of inflammatory mechanisms with markers of Alzheimer's disease (AD) pathology and rates of cognitive decline in the AD spectrum. METHODS: We studied 296 cases from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study (DELCODE) cohort, and an extension cohort of 276 cases of the Alzheimer's Disease Neuroimaging Initiative study. Using Bayesian confirmatory factor analysis, we constructed latent factors for synaptic integrity, microglia, cerebrovascular endothelial function, cytokine/chemokine, and complement components of the inflammatory response using a set of inflammatory markers in cerebrospinal fluid. RESULTS: We found strong evidence for an association of synaptic integrity, microglia response, and cerebrovascular endothelial function with a latent factor of AD pathology and with rates of cognitive decline. We found evidence against an association of complement and cytokine/chemokine factors with AD pathology and rates of cognitive decline. DISCUSSION: Latent factors provided access to directly unobservable components of the neuroinflammatory response and their association with AD pathology and cognitive decline.

10.
Neurology ; 102(1): e207901, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38165362

BACKGROUND AND OBJECTIVES: Corticobasal syndrome (CBS) with underlying 4-repeat tauopathy is a progressive neurodegenerative disease characterized by declining cognitive and motor functions. Biomarkers for assessing pathologic brain changes in CBS including tau-PET, 18 kDa translocator protein (TSPO)-PET, structural MRI, neurofilament light chain (NfL), or glial fibrillary acidic protein (GFAP) have recently been evaluated for differential diagnosis and disease staging, yet their association with disease trajectories remains unclear. Therefore, we performed a head-to-head comparison of neuroimaging (tau-PET, TSPO-PET, structural MRI) and plasma biomarkers (NfL, GFAP) as prognostic tools for longitudinal clinical trajectories in ß-amyloid (Aß)-negative CBS. METHODS: We included patients with clinically diagnosed Aß-negative CBS with clinical follow-up data who underwent baseline structural MRI and plasma-NfL analysis for assessing neurodegeneration, [18F]PI-2620-PET for assessing tau pathology, [18F]GE-180-PET for assessing microglia activation, and plasma-GFAP analysis for assessing astrocytosis. To quantify tau and microglia load, we assessed summary scores of whole-brain, cortical, and subcortical PET signal. For structural MRI analysis, we quantified subcortical and cortical gray matter volume. Plasma NfL and GFAP values were assessed using Simoa-based immunoassays. Symptom progression was determined using a battery of cognitive and motor tests (i.e., Progressive Supranuclear Palsy Rating Scale [PSPRS]). Using linear mixed models, we tested whether the assessed biomarkers at baseline were associated with faster symptom progression over time (i.e., time × biomarker interaction). RESULTS: Overall, 21 patients with Aß-negative CBS with ∼2-year clinical follow-up data were included. Patients with CBS with more widespread global tau-PET signal showed faster clinical progression (PSPRS: B/SE = 0.001/0.0005, p = 0.025), driven by cortical rather than subcortical tau-PET. By contrast, patients with higher global [18F]GE-180-PET readouts showed slower clinical progression (PSPRS: B/SE = -0.056/0.023, p = 0.019). No association was found between gray matter volume and clinical progression. Concerning fluid biomarkers, only higher plasma-NfL (PSPRS: B/SE = 0.176/0.046, p < 0.001) but not GFAP was associated with faster clinical deterioration. In a subsequent sensitivity analysis, we found that tau-PET, TSPO-PET, and plasma-NfL showed significant interaction effects with time on clinical trajectories when tested in the same model. DISCUSSION: [18F]PI-2620 tau-PET, [18F]GE-180 TSPO-PET, and plasma-NfL show prognostic potential for clinical progression in patients with Aß-negative CBS with probable 4-repeat tauopathy, which can be useful for clinical decision-making and stratifying patients in clinical trials.


Corticobasal Degeneration , Neurodegenerative Diseases , Tauopathies , Humans , Intermediate Filaments , Amyloid beta-Peptides , Biomarkers , Disease Progression , Receptors, GABA
11.
Mol Psychiatry ; 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38216727

Neuroinflammation is a hallmark of Alzheimer's disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, Aß42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295); a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM; n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological Aß when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity.

12.
J Neuroinflammation ; 21(1): 30, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38263017

BACKGROUND AND OBJECTIVES: 18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between ß-amyloid-accumulation and microglial activation in AD. METHODS: 49 patients with AD (29 females, all Aß-positive) and 15 Aß-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and ß-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional Aß-PET on TSPO-PET was used to determine the Aß-plaque-dependent microglial response (slope) and the Aß-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI). RESULTS: In AD, females showed higher mean cortical TSPO-PET z-scores (0.91 ± 0.49; males 0.30 ± 0.75; p = 0.002), while Aß-PET z-scores were similar. The Aß-plaque-independent microglial response was stronger in females with AD (+ 0.37 ± 0.38; males with AD - 0.33 ± 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the Aß-plaque-dependent microglial response was not different between sexes. The Aß-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the Aß-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005). CONCLUSION: While microglia response to fibrillar Aß is similar between sexes, women with AD show a stronger Aß-plaque-independent microglia response. This sex difference in Aß-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the Aß-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.


Alzheimer Disease , Microglia , Humans , Female , Male , Body Mass Index , Neuroinflammatory Diseases , Amyloid beta-Peptides , Obesity , Receptors, GABA
13.
Eur J Nucl Med Mol Imaging ; 51(4): 1023-1034, 2024 Mar.
Article En | MEDLINE | ID: mdl-37971501

PURPOSE: Metabolic network analysis of FDG-PET utilizes an index of inter-regional correlation of resting state glucose metabolism and has been proven to provide complementary information regarding the disease process in parkinsonian syndromes. The goals of this study were (i) to evaluate pattern similarities of glucose metabolism and network connectivity in dementia with Lewy bodies (DLB) subjects with subthreshold dopaminergic loss compared to advanced disease stages and to (ii) investigate metabolic network alterations of FDG-PET for discrimination of patients with early DLB from other neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, multiple system atrophy) at individual patient level via principal component analysis (PCA). METHODS: FDG-PETs of subjects with probable or possible DLB (n = 22) without significant dopamine deficiency (z-score < 2 in putamen binding loss on DaT-SPECT compared to healthy controls (HC)) were scaled by global-mean, prior to volume-of-interest-based analyses of relative glucose metabolism. Single region metabolic changes and network connectivity changes were compared against HC (n = 23) and against DLB subjects with significant dopamine deficiency (n = 86). PCA was applied to test discrimination of patients with DLB from disease controls (n = 101) at individual patient level. RESULTS: Similar patterns of hypo- (parietal- and occipital cortex) and hypermetabolism (basal ganglia, limbic system, motor cortices) were observed in DLB patients with and without significant dopamine deficiency when compared to HC. Metabolic connectivity alterations correlated between DLB patients with and without significant dopamine deficiency (R2 = 0.597, p < 0.01). A PCA trained by DLB patients with dopamine deficiency and HC discriminated DLB patients without significant dopaminergic loss from other neurodegenerative parkinsonian disorders at individual patient level (area-under-the-curve (AUC): 0.912). CONCLUSION: Disease-specific patterns of altered glucose metabolism and altered metabolic networks are present in DLB subjects without significant dopaminergic loss. Metabolic network alterations in FDG-PET can act as a supporting biomarker in the subgroup of DLB patients without significant dopaminergic loss at symptoms onset.


Alzheimer Disease , Lewy Body Disease , Humans , Lewy Body Disease/diagnostic imaging , Dopamine/metabolism , Fluorodeoxyglucose F18 , Alzheimer Disease/metabolism , Positron-Emission Tomography , Glucose/metabolism , Metabolic Networks and Pathways
14.
Int J Geriatr Psychiatry ; 38(10): e6007, 2023 10.
Article En | MEDLINE | ID: mdl-37800601

BACKGROUND: Alzheimer's disease (AD) is often preceded by stages of cognitive impairment, namely subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While cerebrospinal fluid (CSF) biomarkers are established predictors of AD, other non-invasive candidate predictors include personality traits, anxiety, and depression, among others. These predictors offer non-invasive assessment and exhibit changes during AD development and preclinical stages. METHODS: In a cross-sectional design, we comparatively evaluated the predictive value of personality traits (Big Five), geriatric anxiety and depression scores, resting-state functional magnetic resonance imaging activity of the default mode network, apoliprotein E (ApoE) genotype, and CSF biomarkers (tTau, pTau181, Aß42/40 ratio) in a multi-class support vector machine classification. Participants included 189 healthy controls (HC), 338 individuals with SCD, 132 with amnestic MCI, and 74 with mild AD from the multicenter DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). RESULTS: Mean predictive accuracy across all participant groups was highest when utilizing a combination of personality, depression, and anxiety scores. HC were best predicted by a feature set comprised of depression and anxiety scores and participants with AD were best predicted by a feature set containing CSF biomarkers. Classification of participants with SCD or aMCI was near chance level for all assessed feature sets. CONCLUSION: Our results demonstrate predictive value of personality trait and state scores for AD. Importantly, CSF biomarkers, personality, depression, anxiety, and ApoE genotype show complementary value for classification of AD and its at-risk stages.


Alzheimer Disease , Cognitive Dysfunction , Aged , Humans , Alzheimer Disease/psychology , Amyloid beta-Peptides/cerebrospinal fluid , Anxiety , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/psychology , Cross-Sectional Studies , Depression , Machine Learning , Personality
15.
Neurology ; 101(21): e2185-e2196, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37821235

BACKGROUND AND OBJECTIVES: To determine the relevance of minor neuropsychological deficits (MNPD) in patients with subjective cognitive decline (SCD) with regard to CSF levels of Alzheimer disease (AD) biomarkers, cognitive decline, and clinical progression to mild cognitive impairment (MCI). METHODS: This study included patients with clinical SCD and SCD-free, healthy control (HC) participants with available baseline CSF and/or longitudinal cognitive data from the observational DZNE Longitudinal Cognitive Impairment and Dementia study. We defined MNPD as a performance of at least 0.5SD below the mean on a demographically adjusted total score derived from the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological assessment battery. We compared SCD patients with MNPD and those without MNPD with regard to CSF amyloid-ß (Aß)42/Aß40, phosphorylated tau (p-tau181), total tau and Aß42/p-tau181 levels, longitudinal cognitive composite trajectories, and risk of clinical progression to incident MCI (follow-up M ± SD: 40.6 ± 23.7 months). In addition, we explored group differences between SCD and HC in those without MNPD. RESULTS: In our sample (N = 672, mean age: 70.7 ± 5.9 years, 50% female), SCD patients with MNPD (n = 55, 12.5% of SCD group) showed significantly more abnormal CSF biomarker levels, increased cognitive decline, and a higher risk of progression to incident MCI (HR: 4.07, 95% CI 2.46-6.74) compared with SCD patients without MNPD (n = 384). MNPD had a positive predictive value of 57.0% (95% CI 38.5-75.4) and a negative predictive value of 86.0% (95% CI 81.9-90.1) for the progression of SCD to MCI within 3 years. SCD patients without MNPD showed increased cognitive decline and a higher risk of incident MCI compared with HC participants without MNPD (n = 215; HR: 4.09, 95% CI 2.07-8.09), while AD biomarker levels did not differ significantly between these groups. DISCUSSION: Our results suggest that MNPD are a risk factor for AD-related clinical progression in cognitively normal patients seeking medical counseling because of SCD. As such, the assessment of MNPD could be useful for individual clinical prediction and for AD risk stratification in clinical trials. However, SCD remains a risk factor for future cognitive decline even in the absence of MNPD.


Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Middle Aged , Aged , Male , Longitudinal Studies , Alzheimer Disease/psychology , Amyloid beta-Peptides , Cognitive Dysfunction/psychology , Biomarkers , Disease Progression , tau Proteins
16.
Front Aging Neurosci ; 15: 1170879, 2023.
Article En | MEDLINE | ID: mdl-37711996

Background: Sustained environmental enrichment (EE) through a variety of leisure activities may decrease the risk of developing Alzheimer's disease. This cross-sectional cohort study investigated the association between long-term EE in young adulthood through middle life and microstructure of fiber tracts associated with the memory system in older adults. Methods: N = 201 cognitively unimpaired participants (≥ 60 years of age) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) baseline cohort were included. Two groups of participants with higher (n = 104) or lower (n = 97) long-term EE were identified, using the self-reported frequency of diverse physical, intellectual, and social leisure activities between the ages 13 to 65. White matter (WM) microstructure was measured by fractional anisotropy (FA) and mean diffusivity (MD) in the fornix, uncinate fasciculus, and parahippocampal cingulum using diffusion tensor imaging. Long-term EE groups (lower/higher) were compared with adjustment for potential confounders, such as education, crystallized intelligence, and socio-economic status. Results: Reported participation in higher long-term EE was associated with greater fornix microstructure, as indicated by higher FA (standardized ß = 0.117, p = 0.033) and lower MD (ß = -0.147, p = 0.015). Greater fornix microstructure was indirectly associated (FA: unstandardized B = 0.619, p = 0.038; MD: B = -0.035, p = 0.026) with better memory function through higher long-term EE. No significant effects were found for the other WM tracts. Conclusion: Our findings suggest that sustained participation in a greater variety of leisure activities relates to preserved WM microstructure in the memory system in older adults. This could be facilitated by the multimodal stimulation associated with the engagement in a physically, intellectually, and socially enriched lifestyle. Longitudinal studies will be needed to support this assumption.

17.
Cell ; 186(17): 3706-3725.e29, 2023 08 17.
Article En | MEDLINE | ID: mdl-37562402

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.


Bone Marrow , Nervous System Diseases , Skull , Animals , Humans , Mice , Bone Marrow/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carrier Proteins/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Positron-Emission Tomography/methods , Receptors, GABA/metabolism , Skull/cytology , Skull/diagnostic imaging
18.
Mol Psychiatry ; 28(10): 4438-4450, 2023 Oct.
Article En | MEDLINE | ID: mdl-37495886

ß-amyloid (Aß) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aß-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aß (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aß (AD: ßT = 0.412 ± 0.196 vs. ßA = 0.142 ± 0.123, p < 0.001; AD-CBS: ßT = 0.385 ± 0.176 vs. ßA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (ßT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aß related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.


Alzheimer Disease , Tauopathies , Humans , Microglia/pathology , Neuroinflammatory Diseases , Alzheimer Disease/pathology , Amyloid beta-Peptides , Atrophy/pathology , Biomarkers , tau Proteins , Receptors, GABA
19.
Alzheimers Res Ther ; 15(1): 97, 2023 05 24.
Article En | MEDLINE | ID: mdl-37226207

BACKGROUND: White matter hyperintensities (WMH) in subjects across the Alzheimer's disease (AD) spectrum with minimal vascular pathology suggests that amyloid pathology-not just arterial hypertension-impacts WMH, which in turn adversely influences cognition. Here we seek to determine the effect of both hypertension and Aß positivity on WMH, and their impact on cognition. METHODS: We analysed data from subjects with a low vascular profile and normal cognition (NC), subjective cognitive decline (SCD), and amnestic mild cognitive impairment (MCI) enrolled in the ongoing observational multicentre DZNE Longitudinal Cognitive Impairment and Dementia Study (n = 375, median age 70.0 [IQR 66.0, 74.4] years; 178 female; NC/SCD/MCI 127/162/86). All subjects underwent a rich neuropsychological assessment. We focused on baseline memory and executive function-derived from multiple neuropsychological tests using confirmatory factor analysis-, baseline preclinical Alzheimer's cognitive composite 5 (PACC5) scores, and changes in PACC5 scores over the course of three years (ΔPACC5). RESULTS: Subjects with hypertension or Aß positivity presented the largest WMH volumes (pFDR < 0.05), with spatial overlap in the frontal (hypertension: 0.42 ± 0.17; Aß: 0.46 ± 0.18), occipital (hypertension: 0.50 ± 0.16; Aß: 0.50 ± 0.16), parietal lobes (hypertension: 0.57 ± 0.18; Aß: 0.56 ± 0.20), corona radiata (hypertension: 0.45 ± 0.17; Aß: 0.40 ± 0.13), optic radiation (hypertension: 0.39 ± 0.18; Aß: 0.74 ± 0.19), and splenium of the corpus callosum (hypertension: 0.36 ± 0.12; Aß: 0.28 ± 0.12). Elevated global and regional WMH volumes coincided with worse cognitive performance at baseline and over 3 years (pFDR < 0.05). Aß positivity was negatively associated with cognitive performance (direct effect-memory: - 0.33 ± 0.08, pFDR < 0.001; executive: - 0.21 ± 0.08, pFDR < 0.001; PACC5: - 0.29 ± 0.09, pFDR = 0.006; ΔPACC5: - 0.34 ± 0.04, pFDR < 0.05). Splenial WMH mediated the relationship between hypertension and cognitive performance (indirect-only effect-memory: - 0.05 ± 0.02, pFDR = 0.029; executive: - 0.04 ± 0.02, pFDR = 0.067; PACC5: - 0.05 ± 0.02, pFDR = 0.030; ΔPACC5: - 0.09 ± 0.03, pFDR = 0.043) and WMH in the optic radiation partially mediated that between Aß positivity and memory (indirect effect-memory: - 0.05 ± 0.02, pFDR = 0.029). CONCLUSIONS: Posterior white matter is susceptible to hypertension and Aß accumulation. Posterior WMH mediate the association between these pathologies and cognitive dysfunction, making them a promising target to tackle the downstream damage related to the potentially interacting and potentiating effects of the two pathologies. TRIAL REGISTRATION: German Clinical Trials Register (DRKS00007966, 04/05/2015).


Alzheimer Disease , Hypertension , White Matter , Humans , Female , Aged , Amyloid beta-Peptides , Cross-Sectional Studies , White Matter/diagnostic imaging , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Hypertension/complications , Hypertension/diagnostic imaging
20.
Alzheimers Dement ; 19(11): 4922-4934, 2023 11.
Article En | MEDLINE | ID: mdl-37070734

INTRODUCTION: It remains unclear whether functional brain networks are consistently altered in individuals with subjective cognitive decline (SCD) of diverse ethnic and cultural backgrounds and whether the network alterations are associated with an amyloid burden. METHODS: Cross-sectional resting-state functional magnetic resonance imaging connectivity (FC) and amyloid-positron emission tomography (PET) data from the Chinese Sino Longitudinal Study on Cognitive Decline and German DZNE Longitudinal Cognitive Impairment and Dementia cohorts were analyzed. RESULTS: Limbic FC, particularly hippocampal connectivity with right insula, was consistently higher in SCD than in controls, and correlated with SCD-plus features. Smaller SCD subcohorts with PET showed inconsistent amyloid positivity rates and FC-amyloid associations across cohorts. DISCUSSION: Our results suggest an early adaptation of the limbic network in SCD, which may reflect increased awareness of cognitive decline, irrespective of amyloid pathology. Different amyloid positivity rates may indicate a heterogeneous underlying etiology in Eastern and Western SCD cohorts when applying current research criteria. Future studies should identify culture-specific features to enrich preclinical Alzheimer's disease in non-Western populations. HIGHLIGHTS: Common limbic hyperconnectivity across Chinese and German subjective cognitive decline (SCD) cohorts was observed. Limbic hyperconnectivity may reflect awareness of cognition, irrespective of amyloid load. Further cross-cultural harmonization of SCD regarding Alzheimer's disease pathology is required.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cross-Sectional Studies , East Asian People , Magnetic Resonance Imaging , Positron-Emission Tomography
...