Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Nutrients ; 15(14)2023 Jul 21.
Article En | MEDLINE | ID: mdl-37513651

High-throughput RNA-sequencing can determine the impact of nutrients and their combinations on gene transcription levels in osteocytes, and clarify the biological pathways associated with their impact on bone tissues. Previously, we reported that resveratrol (RES) and peonidin-3-O-glucoside (POG) increased osteoblastogenesis, as well as reduced osteoclastogenesis in transgenic teleost fish models. Here, we perform whole-genome transcriptomic profiling of osteoblasts treated with POG or RES to provide a comprehensive understanding of alterations in gene expression and the molecular mechanisms involved. Cultured human fetal osteoblastic hFOB 1.19 cells were treated with the test compounds, and then RNA was used to prepare RNA-seq libraries, that were sequenced using a NovaSeq 6000. Treatment with POG or RES increased osteoblast proliferation and reduced apoptosis. Transcriptomic profiling showed that of the 29,762 genes investigated, 3177 were differentially expressed (1481 upregulated, 1696 downregulated, FDR ≤ 0.05) in POG-treated osteoblasts. In the RES-treated osteoblasts, 2288 genes were differentially expressed (DGEs, 1068 upregulated, 1220 downregulated, FDR ≤ 0.05). Ingenuity® Pathway Analysis (IPA) of DGEs from RES or POG-treated osteoblasts revealed significant downregulation of the apoptosis, osteoarthritis and HIF1α canonical pathways, and a significant reduction in Rankl mRNA expression. The data suggest that RES and POG have both anabolic and anticlastogenic effects.


Osteoblasts , Osteogenesis , Animals , Humans , Resveratrol/pharmacology , Resveratrol/metabolism , Osteoblasts/metabolism , Cell Differentiation/genetics , Cells, Cultured , Apoptosis , RNA/metabolism
2.
J Ayurveda Integr Med ; 13(2): 100525, 2022.
Article En | MEDLINE | ID: mdl-34998645

Panchgavya represents milk, urine, dung, ghee, and curd, derived from cow and serves irreplaceable medicinal importance in Ayurveda and traditional Indian clinical practices. In Ayurveda,Panchgavya treatment is termed as 'Cowpathy'. In India, the cow is worshipped as a god called 'Gaumata,' indicating its nourishing nature like a mother. Ayurveda recommends Panchagavya to treat diseases of multiple systems, including severe conditions, with almost no side-effects. It can help build a healthy population, alternative sources of energy, complete nutritional requirements, eradicate poverty, pollution-free environment, organic farming, etc. Panchgavya can also give back to mother nature by promoting soil fertility, earthworm production, protecting crops from bacterial and fungal infections, etc. Scientific efforts shall be taken to build evidence for the clinical application of Cowpathy. The present review aims to summarize the health and medicinal benefits of Panchgavya.

3.
Phytother Res ; 35(11): 6255-6269, 2021 Nov.
Article En | MEDLINE | ID: mdl-34704297

Experimental and clinical studies suggest a positive impact of anthocyanins on bone health; however, the mechanisms of anthocyanins altering the differentiation and function of osteoblasts and osteoclasts are not fully understood. This work demonstrates that dietary anthocyanins and resveratrol increased proliferation of cultured human hFOB 1.19 osteoblasts. In addition, treatment of serum starvation of hFOB osteoblasts with anthocyanins and resveratrol at 1.0 µg/ml reduced apoptosis, the Bax/Bcl-2 ratio, p53, and HDAC1 expression, but increased SIRT1/3 and PGC1α mRNA expression, suggesting mitochondrial and epigenetic regulation. In Sp7/osterix:mCherry transgenic medaka, peonidin-3-O-glucoside and resveratrol increased osteoblast differentiation and increased the expression of Sp7/osterix. Cyanidin, peonidin-3-O-glucoside, and resveratrol also reduced RANKL-induced ectopic osteoclast formation and bone resorption in col10α1:nlGFP/rankl:HSE:CFP medaka in doses of 1-4 µg/ml. The results indicate that both cyanidin and peonidin-3-O-glucoside have anabolic effects on bone, increasing osteoblast proliferation and differentiation, mitochondrial biogenesis, and by altering the osteoblast epigenome. Cyanidin and peonidin-3-O-glucoside also reduced RANKL-induced bone resorption in a transgenic medaka model of bone resorption. Thus, peonidin-3-O-glucoside and cyanidin appear to both increase bone formation and reduce bone loss, suggesting that they be further investigated as potential treatments for osteoporosis and osteomalacia.


Bone Resorption , Oryzias , Animals , Anthocyanins/pharmacology , Bone Resorption/drug therapy , Cell Differentiation , Epigenesis, Genetic , Glucosides , Humans , Oryzias/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis , RANK Ligand/metabolism
4.
Pharm Dev Technol ; 22(1): 90-102, 2017 Feb.
Article En | MEDLINE | ID: mdl-27291246

In the present study, a lyophilized milk-based solid dispersion (SD) of ritonavir (RTV) was developed with the goal of improving its aqueous solubility. The SD was prepared by lyophilization, and characterized for its physicochemical and functional properties. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), photomicroscopy and powder X-ray diffraction (PXRD) were used to confirm the formation and robustness of the SD formulation. The prepared SD formulations were functionally evaluated by saturation solubility, in vitro drug release and ex vivo permeation studies. The optimized SD formulation exhibited a significantly higher (30-fold) aqueous solubility (11.36 ± 0.06 µg/mL), compared to the pure RTV (0.37 ± 0.03 µg/mL). The in vitro dissolution studies revealed a significantly higher (∼10-fold) efficiency of the optimized SD formulation in releasing the RTV, compared to the pure RTV. The ex vivo permeation studies with the everted intestine method showed that prepared SD formulation significantly improved the permeation of RTV (75.6 ± 3.09, % w/w), compared to pure RTV (20.45 ± 1.68, % w/w). Thus, SD formulation utilizing lyophilized milk as a carrier appears to be a promising alternative strategy to improve the aqueous solubility of poorly water soluble drugs.


Freeze Drying , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , Intestinal Absorption , Ritonavir/chemistry , Ritonavir/pharmacokinetics , Animals , Calorimetry, Differential Scanning , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Female , Freeze Drying/methods , Intestinal Mucosa/metabolism , Male , Micelles , Milk/chemistry , Permeability , Powder Diffraction , Rats, Sprague-Dawley , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry , X-Ray Diffraction
5.
Eur J Pharm Sci ; 108: 23-35, 2017 Oct 15.
Article En | MEDLINE | ID: mdl-27590125

In an attempt to improve the solubility and permeability of Standardized Bacopa Extract (SBE), a complexation approach based on phospholipid was employed. A solvent evaporation method was used to prepare the SBE-phospholipid complex (Bacopa Naturosome, BN). The formulation and process variables were optimized using a central-composite design. The formation of BN was confirmed by photomicroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD). The saturation solubility, the in-vitro dissolution, and the ex-vivo permeability studies were used for the functional evaluation of the prepared complex. BN exhibited a significantly higher aqueous solubility compared to the pure SBE (20-fold), or the physical mixture of SBE and the phospholipid (13-fold). Similarly, the in-vitro dissolution revealed a significantly higher efficiency of the prepared complex (BN) in releasing the SBE (>97%) in comparison to the pure SCE (~42%), or the physical mixture (~47%). The ex-vivo permeation studies showed that the prepared BN significantly improved the permeation of SBE (>90%), compared to the pure SBE (~21%), or the physical mixture (~24%). Drug-phospholipid complexation may thus be a promising strategy for solubility enhancement of bioactive phytoconstituents.


Bacopa/chemistry , Excipients/chemistry , Phospholipids/chemistry , Phytochemicals/administration & dosage , Plant Extracts/administration & dosage , Animals , Antidepressive Agents/administration & dosage , Biological Availability , Chemistry, Pharmaceutical , Drug Delivery Systems , Drug Liberation , Humans , Male , Mice , Particle Size , Permeability , Powder Diffraction , Solubility
6.
AAPS J ; 18(1): 102-14, 2016 Jan.
Article En | MEDLINE | ID: mdl-26563253

In the present study, a phospholipid-based complex of standardized Centella extract (SCE) was developed with a goal of improving the bioavailability of its phytoconstituents. The SCE-phospholipid complex was prepared by solvent evaporation method and characterized for its physicochemical and functional properties. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), photomicroscopy, and powder x-ray diffraction (PXRD) were used to confirm the formation of Centella naturosome (CN). The prepared complex was functionally evaluated by apparent solubility, in vitro drug release, ex vivo permeation, and in vivo efficacy studies. The prepared CN exhibited a significantly higher (12-fold) aqueous solubility (98.0 ± 1.4 µg/mL), compared to the pure SCE (8.12 ± 0.44 µg/mL), or the physical mixture of SCE and the phospholipid (13.6 ± 0.4 µg/mL). The in vitro dissolution studies revealed a significantly higher efficiency of CN in releasing the SCE (99.2 ± 4.7, % w/w) in comparison to the pure SCE (39.2 ± 2.3, % w/w), or the physical mixture (42.8 ± 2.09, % w/w). The ex vivo permeation studies with the everted intestine method showed that the prepared CN significantly improved the permeation of SCE (82.8 ± 3.7, % w/w), compared to the pure SCE (26.8 ± 2.4, % w/w), or the physical mixture (33.0 ± 2.7, % w/w). The in vivo efficacy studies using the Morris Water Maze test indicated a significant improvement of the spatial learning and memory in aged mice treated with CN. Thus, drug-phospholipid complexation appears to be a promising strategy to improve the aqueous solubility and bioavailability of bioactive phytoconstituents.


Centella/chemistry , Phospholipids/chemistry , Phytotherapy/methods , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Aging/psychology , Animals , Biological Availability , Intestinal Absorption , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Space Perception/drug effects , Triterpenes/chemistry , Triterpenes/pharmacokinetics
7.
AAPS PharmSciTech ; 17(2): 436-45, 2016 Apr.
Article En | MEDLINE | ID: mdl-26208439

The aim of the present study was to develop and evaluate a thermoresponsive depot system comprising of docetaxel-loaded cubosomes. The cubosomes were dispersed within a thermoreversible gelling system for controlled drug delivery. The cubosome dispersion was prepared by dilution method, followed by homogenization using glyceryl monooleate, ethanol and Pluronic® F127 in distilled water. The cubosome dispersion was then incorporated into a gelling system prepared with Pluronic® F127 and Pluronic® F68 in various ratios to formulate a thermoresponsive depot system. The thermoresponsive depot formulations undergo a thermoreversible gelation process i.e., they exists as free flowing liquids at room temperature, and transforms into gels at higher temperatures e.g., body temperature, to form a stable depot in aqueous environment. The mean particle size of the cubosomes in the dispersion prepared with Pluronic® F127, with and without the drug was found to be 170 and 280 nm, respectively. The prepared thermoresponsive depot system was evaluated by assessing various parameters like time for gelation, injectability, gel erosion, and in-vitro drug release. The drug-release studies of the cubosome dispersion before incorporation into the gelling system revealed that a majority (∼97%) of the drug was released within 12 h. This formulation also showed a short lag time (∼3 min). However, when incorporated into a thermoresponsive depot system, the formulation exhibited an initial burst release of ∼21%, and released only ∼39% drug over a period of 12 h, thus indicating its potential as a controlled drug delivery system.


Delayed-Action Preparations/chemistry , Nanostructures/chemistry , Taxoids/chemistry , Chemistry, Pharmaceutical/methods , Docetaxel , Drug Carriers/chemistry , Drug Delivery Systems/methods , Excipients/chemistry , Gels/chemistry , Particle Size , Poloxamer/chemistry , Temperature
8.
AAPS PharmSciTech ; 16(6): 1344-56, 2015 Dec.
Article En | MEDLINE | ID: mdl-25922089

The influence of formulation variables, i.e., a hydrophilic polymer (Methocel(®) E15) and a film-forming polymer (Eudragit(®) RL 100 and Eudragit(®) RS 100), on the physicochemical and functional properties of a transdermal film formulation was assessed. Several terpenes were initially evaluated for their drug permeation enhancement effects on the transdermal film formulations. D-Limonene was found to be the most efficient permeation enhancer among the tested terpenes. Transdermal film formulations containing granisetron (GRN) as a model drug, D-limonene as a permeation enhancer, and different ratios of a hydrophilic polymer (Methocel(®) E15) and a film-forming polymer (Eudragit(®) RL 100 or Eudragit(®) RS 100) were prepared. The prepared films were evaluated for their physicochemical properties such as weight variation, thickness, tensile strength, folding endurance, elongation (%), flatness, moisture content, moisture uptake, and the drug content uniformity. The films were also evaluated for the in vitro drug release and ex vivo drug permeation. The increasing ratios of Methocel(®):Eudragit(®) polymers in the formulation linearly and significantly increased the moisture content, moisture uptake, water vapor transmission rate (WVTR), and the transdermal flux of GRN from the film formulations. Increasing levels of Methocel(®) in the formulations also increased the rate and extent of the GRN release and the GRN permeation from the prepared films.


Adhesives/chemistry , Excipients/chemistry , Administration, Cutaneous , Chemistry, Pharmaceutical/methods , Cyclohexenes/chemistry , Drug Liberation , Granisetron/chemistry , Hydrophobic and Hydrophilic Interactions , Limonene , Methylcellulose , Permeability , Polymers/chemistry , Polymethacrylic Acids/chemistry , Skin/metabolism , Skin Absorption , Tensile Strength , Terpenes/chemistry , Transdermal Patch
9.
J Pharm Sci ; 104(3): 906-15, 2015 Mar.
Article En | MEDLINE | ID: mdl-25561249

Pharmaceutical excipients are essential components of most modern dosage forms. Although defined as pharmacologically inert, excipients can be thought of as the true enablers of drug product performance. Unintentional variability in the properties of the excipients may be unavoidable, albeit minimizable. The variability may originate from the source, the excipient-manufacturing process, or during the manufacturing of dosage forms. Excipient variability may have a range of influences on their functionality and performance in the dosage form. A better understanding of these influences on the critical quality attributes of the final product is of prime importance. Modern analytical tools provide a significant assistance in characterizing excipient variability to achieve this understanding. The principles and concepts of Quality-by-Design, process analytical technology, and design space, provide a holistic risk-based approach toward manufacture and application of excipients in pharmaceutical formulations. The International Pharmaceutical Excipients Council (IPEC) has developed guidelines for proper selection, use, and evaluation of excipients in pharmaceutical products.


Excipients/chemistry , Pharmaceutical Preparations/chemistry , Chemistry, Pharmaceutical , Dosage Forms , Pharmaceutical Preparations/standards , Quality Control , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/standards
10.
Fitoterapia ; 77(7-8): 585-8, 2006 Dec.
Article En | MEDLINE | ID: mdl-17056202

In light of the traditional claim of Cyperus rotundus in the treatment of diabetes, investigations were carried out to evaluate its effect on alloxan induced hyperglycemia in rats. Oral daily administration of 500 mg/kg of the extract (once a day for seven consecutive days) significantly lowered the blood glucose levels. This antihyperglycemic activity can be attributed to its antioxidant activity as it showed the strong DPPH radical scavenging action in vitro.


Antioxidants/pharmacology , Cyperus , Diabetes Mellitus, Experimental/prevention & control , Hypoglycemic Agents/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Administration, Oral , Alloxan , Animals , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Biphenyl Compounds , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/chemically induced , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Male , Picrates/chemistry , Plant Extracts/administration & dosage , Plant Extracts/therapeutic use , Rats , Rats, Sprague-Dawley , Rhizome
...