Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Main subject
Publication year range
1.
Int J Nanomedicine ; 18: 4821-4838, 2023.
Article in English | MEDLINE | ID: mdl-37662686

ABSTRACT

Introduction: Cancer chemotherapy faces two major challenges - high toxicity of active substances and tumor resistance to drugs. Low toxic nanocarriers in combination with anticancer agents can significantly increase the effectiveness of therapy. Modern advances in nanotechnology make it easy to create materials with the necessary physical and chemical properties. Methods: Two hybrid nanosystems of dextran-polyacrylamide/ zinc oxide nanoparticles (D-PAA/ZnO NPs) were synthesized in aqueous solution with zinc sulphate (D-PAA/ZnO NPs (SO42-)) and zinc acetate (D-PAA/ZnO NPs (-OAc)). The light absorption, fluorescence, dynamic light scattering and transmission electron microscopy for nanocomposite characterization were used. MTT, neutral red uptake and scratch assays were selected as fibroblasts cytotoxicity assays. Cytotoxicity was tested in vitro for normal fibroblasts, MAEC, prostate (LNCaP, PC-3, DU-145) and breast (MDA-MB-231, MCF-7) cancer cells lines. Immunocytochemical methods were used for detection of Ki-67, p53, Bcl-2, Bax, e-cadherin, N-cadherin and CD44 expression. Acridine orange was used to detect morphological changes in cells. Results: The radius of ZnO NPs (SO42-) was 1.5 nm and ZnO NPs (-OAc) was 2 nm. The nanosystems were low-toxic to fibroblasts, MAEC. Cells in the last stages of apoptosis with the formation of apoptotic bodies were detected for all investigated cancer cell lines. Proapoptotic proteins expression in cancer cells indicates an apoptotic death. Increased expression of E-cadherin and N-cadherin was registered for cancer cells line LNCaP, PC-3, DU-145 and MCF-7 after 48 h incubation with D-PAA/ZnO NPs (SO42-). Conclusion: The nanosystems were low-toxic to fibroblasts, MAEC. The D-PAA/ZnO NPs nanosystem synthesized using zinc sulphate demonstrates high cytotoxicity due to destruction of various types of cancer cells in vitro and potentially increases adhesion between cells. Thus, our findings indicate the selective cytotoxicity of D-PAA/ZnO NPs against cancer cells and can be potentially used for cancer treatment.


Subject(s)
Zinc Oxide , Male , Humans , Dextrans , Zinc Sulfate , Acrylic Resins
2.
Nanomaterials (Basel) ; 11(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34578768

ABSTRACT

Embedding nanoparticles (NPs) with organic shells is a way to control their aggregation behavior. Using polymers allows reaching relatively high shell thicknesses but suffers from the difficulty of obtaining regular hybrid objects at gram scale. Here, we describe a three-step synthesis in which multi-gram NP batches are first obtained by thermal decomposition, prior to their covalent grafting by an atom transfer radical polymerization (ATRP) initiator and to the controlled growing of the polymer shell. Specifically, non-aggregated iron oxide NPs with a core principally composed of γ-Fe2O3 (maghemite) and either polystyrene (PS) or polymethyl methacrylate (PMMA) shell were elaborated. The oxide cores of about 13 nm diameter were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). After the polymerization, the overall diameter reached 60 nm, as shown by small-angle neutron scattering (SANS). The behavior in solution as well as rheological properties in the molten state of the polymeric shell resemble those of star polymers. Strategies to further improve the screening of NP cores with the polymer shells are discussed.

3.
Eur Phys J E Soft Matter ; 42(12): 155, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31834544

ABSTRACT

Dilute solutions of asymmetric polystyrene/poly(methyl methacrylate) (PS/PMMA) mixtures in toluene and tetrahydrofuran (THF) are investigated by static and dynamic light scattering (SLS and DLS). Both solvents are good solvents for each of the two polymers. In toluene, the PMMA refractive index increment is close to zero and SLS provides a direct measurement of the PS static scattering functions. DLS correlatively leads to a single relaxation mode connected with these PS chains. Contrarily, two modes well separated in time are observed for identical PS/PMMA mixtures in THF. Scattering from the PMMA chains is no longer negligible and partial static scattering functions can only be obtained through SLS-DLS combination. For identical polymer concentration and PS/PMMA mixture composition, PS scattering functions are then found to be different in both solvents. The difference increases with concentration and is only partly due to distinct thermodynamic parameters according to the solvent. PMMA scattering functions lead to similar conclusions. The Random Phase Approximation (RPA) describes all scattering functions. However, the SLS-DLS combination affords a reasonable approximation for extracting the partial static scattering functions only for the lowest concentrations, i.e. provided the cross polymer correlation term remains negligible.

4.
Chemistry ; 24(64): 17125-17137, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30144185

ABSTRACT

The condensation of aldehydes and amines in water to give amphiphilic imines can lead to a particular autocatalytic behavior known as autopoiesis, in which the closed micellar structure made by the amphiphile at the mesoscale can accelerate the condensation of its constituents. Herein, through a combination of analytical tools, including diffusion ordered spectroscopy (DOSY) as well as light, neutron, and X-ray scattering techniques, the thermodynamic and kinetic parameters were probed at both the level of dynamic covalent imine bond formation and the level of the resulting micellar self-assemblies. It was found that the autopoietic behavior was the result of a combination of several parameters, including solubilization of hydrophobic building blocks, template effect at the core-shell interface, and growth/division cycles of the micellar objects.

5.
Nanoscale ; 9(46): 18456-18466, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29159360

ABSTRACT

In this article, the dynamic structure of complex supramolecular polymers composed of bistable [c2]daisy chain rotaxanes as molecular machines that are linked by ureidopyrimidinones (Upy) as recognition moieties was studied. pH actuation of the integrated mechanically active rotaxanes controls the contraction/extension of the polymer chains as well as their physical reticulation. Small-angle neutron and X-ray scattering were used to study in-depth the nanostructure of the contracted and extended polymer aggregates in toluene solution. The supramolecular polymers comprising contracted nanomachines were found to be equilibrium polymers with a mass that is concentration dependent in dilute and semidilute regimes. Surprisingly, the extended polymers form a gel network with a crystal-like internal structure that is independent of concentration and reminiscent of a pearl-necklace network.

6.
ACS Appl Mater Interfaces ; 9(49): 43030-43042, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29185702

ABSTRACT

Fluorescent nanoparticles (NPs) help to increase spatial and temporal resolution in bioimaging. Advanced microscopy techniques require very bright NPs that exhibit either stable emission for single-particle tracking or complete on/off switching (blinking) for super-resolution imaging. Here, ultrabright dye-loaded polymer NPs with controlled switching properties are developed. To this aim, the salt of a dye (rhodamine B octadecyl ester) with a hydrophobic counterion (fluorinated tetraphenylborate) is encapsulated at very high concentrations up to 30 wt % in NPs made of poly(lactic-co-glycolic acid) (PLGA), poly(methyl methacrylate) (PMMA), and polycaprolactone (PCL) through nanoprecipitation. The obtained 35 nm NPs are nearly 100 times brighter than quantum dots. The nature of the polymer is found to define the collective behavior of the encapsulated dyes so that NPs containing thousands of dyes exhibit either whole particle blinking, for PLGA, or stable emission, for PMMA and PCL. Fluorescence anisotropy measurements together with small-angle X-ray scattering experiments suggest that in less hydrophobic PLGA, dyes tend to cluster, whereas in more hydrophobic PMMA and PCL, dyes are dispersed within the matrix, thus altering the switching behavior of NPs. Experiments using a perylene diimide derivative show a similar effect of the polymer nature. The resulting fluorescent NPs are suitable for a wide range of imaging applications from tracking to super-resolution imaging. The findings on the organization of the load innside NPs will have impact on the development of materials for applications ranging from photovoltaics to drug delivery.

7.
J Am Chem Soc ; 139(13): 4923-4928, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28286945

ABSTRACT

The implementation of artificial molecular machines in polymer science is an important objective that challenges chemists and physicists in order to access an entirely new class of smart materials. To design such systems, the amplification of a mechanical actuation from the nanoscale up to a macroscopic response in the bulk material is a central issue. In this article we show that bistable [c2]daisy chain rotaxanes (i.e., molecular muscles) can be linked into main-chain Upy-based supramolecular polymers. We then reveal by an in depth quantitative study that the pH actuation of the mechanically active rotaxane at the nanoscale influences the physical reticulation of the polymer chains by changing the supramolecular behavior of the Upy units. This nanoactuation within the local structure of the main chain polymer results in a mechanically controlled sol-gel transition at the macroscopic level.

8.
Polymers (Basel) ; 8(6)2016 Jun 08.
Article in English | MEDLINE | ID: mdl-30979321

ABSTRACT

Scattering functions of sodium sulfonated polystyrene (NaPSS) star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS) technique. Whatever the concentration c, they display two maxima. The first, of abscissa q1*, is related to a position order between star cores and scales as q1* ∝ c1/3. The second, of abscissa q2*, is also observed in the scattering function of a semi-dilute solution of NaPSS linear polyelectrolytes. In the dilute regime (c < c*, non-overlapping stars), peak abscissa does not depend on concentration c and is just an intramolecular characteristic associated with the electrostatic repulsion between arms of the same star. In the semi-dilute regime, due to the star interpenetration, the scattering function ⁻ through the peak position, reflects repulsion between arms of the same star or of different stars. The c threshold between these distinct c-dependencies of q2* in the dilute and semi-dilute regimes is estimated as c*. Just as simple is the measurement of the geometrical radius R of the star obtained from the q1* value at c* through the relation 2R = 2π/q1*. By considering NaPSS stars of the same functionality with different degrees of polymerization per arm Na, we find R scaling linearly with Na, suggesting an elongated average conformation of the arms. This is in agreement with theoretical predictions and simulations. Meanwhile the value of q2* measured in the dilute regime does not allow any inhomogeneous counterion distribution inside the stars to be revealed.

9.
Nat Nanotechnol ; 10(2): 161-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25599191

ABSTRACT

Making molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported. However, despite recent progress, the ultimate challenge of coordinating individual molecular motors in a continuous mechanical process that can have a measurable effect at the macroscale has remained elusive. Here, we show that by integrating light-driven unidirectional molecular rotors as reticulating units in a polymer gel, it is possible to amplify their individual motions to achieve macroscopic contraction of the material. Our system uses the incoming light to operate under far-from-equilibrium conditions, and the work produced by the motor in the photostationary state is used to twist the entangled polymer chains up to the collapse of the gel. Our design could be a starting point to integrate nanomotors in metastable materials to store energy and eventually to convert it.

10.
J Phys Chem B ; 119(4): 1669-80, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25531696

ABSTRACT

Octafunctionalized spherosilsesquioxanes (Q8M8(H)), decorated with Si-H functions, could be used to design, by coupling via hydrosilylation with α-methoxy-ω-undecenyl poly(ethylene oxide)s (PEOs), organic-inorganic nanocomposite structures. (1)H, (13)C, and (29)Si NMR; size exclusion chromatography; and Fourier transfrom infrared spectroscopy were used to follow the grafting reaction and determine the molar mass and the functionality of the different species. Hybrid star-shaped poly(ethylene oxide)s of precise molar mass and functionality could be isolated by fractional precipitation of the raw reaction product. Absolute molar masses of the purified star-shaped PEOs, calculated with the assumption of a functionality of 8, were comparable when measured by light scattering in methanol and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Small-angle X-ray scattering was employed to determine their molecular and structural characteristics, representing the versatility and innovative aspect to this study. Both differential scanning calorimetry and optical microscopy were utilized to elaborate and analyze the thermal properties and crystallization, respectively, of the hybrid stars. Further ongoing work is being carried out currently to investigate and foresee the use of longer PEO branches onto the core.

11.
ACS Nano ; 8(10): 10111-24, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25244290

ABSTRACT

By using a combination of experimental and theoretical tools, we elucidate unique physical characteristics of supramolecular triarylamine nanowires (STANWs), their packed structure, as well as the entire kinetics of the associated radical-controlled supramolecular polymerization process. AFM, small-angle X-ray scattering, and all-atomic computer modeling reveal the two-columnar "snowflake" internal structure of the fibers involving the π-stacking of triarylamines with alternating handedness. The polymerization process and the kinetics of triarylammonium radicals formation and decay are studied by UV-vis spectroscopy, nuclear magnetic resonance and electronic paramagnetic resonance. We fully describe these experimental data with theoretical models demonstrating that the supramolecular self-assembly starts by the production of radicals that are required for nucleation of double-columnar fibrils followed by their growth in double-strand filaments. We also elucidate nontrivial kinetics of this self-assembly process revealing sigmoid time dependency and complex self-replicating behavior. The hierarchical approach and other ideas proposed here provide a general tool to study kinetics in a large number of self-assembling fibrillar systems.

12.
J Am Chem Soc ; 136(32): 11382-8, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25053238

ABSTRACT

Organic materials exhibiting metallic behavior are promising for numerous applications ranging from printed nanocircuits to large area electronics. However, the optimization of electronic conduction in organic metals such as charge-transfer salts or doped conjugated polymers requires high crystallinity, which is detrimental to their processability. To overcome this problem, the combination of the electronic properties of metal-like materials with the mechanical properties of soft self-assembled systems is attractive but necessitates the absence of structural defects in a regular lattice. Here we describe a one-dimensional supramolecular polymer in which photoinduced through-space charge-transfer complexes lead to highly coherent domains with delocalized electronic states displaying metallic behavior. We also reveal that diffusion of supramolecular polarons in the nanowires repairs structural defects thereby improving their conduction. The ability to access metallic properties from mendable self-assemblies extends the current understanding of both fields and opens a wide range of processing techniques for applications in organic electronics.

13.
Nanoscale Res Lett ; 9(1): 164, 2014.
Article in English | MEDLINE | ID: mdl-24708898

ABSTRACT

Silver nanoparticles were synthesized in linear and branched polyelectrolyte matrices using different reductants and distinct synthesis conditions. The effect of the host hydrolyzed linear polyacrylamide and star-like copolymers dextran-graft-polyacrylamide of various compactness, the nature of the reductant, and temperature were studied on in situ synthesis of silver sols. The related nanosystems were analyzed by high-resolution transmission electron microscopy and UV-vis absorption spectrophotometry. It was established that the internal structure of the polymer matrix as well as the nature of the reductant determines the process of the silver nanoparticle formation. Specifically, the branched polymer matrices were much more efficient than the linear ones for stable nanosystem preparation.

14.
Langmuir ; 24(16): 8950-3, 2008 Aug 19.
Article in English | MEDLINE | ID: mdl-18582135

ABSTRACT

We have used atomic force microscopy to study the morphology of hydrophobic polyelectrolytes adsorbed on surfaces. The polyelectrolytes consisted of polystyrene sulfonate (PSS) chains made with three charge densities: 32%, 67%, and 92%. They were adsorbed on two types of surfaces: mica, and phospholipid bilayers made of mixed neutral and cationic lipids. We show that the chains with a low charge density (32%) are collapsed in spherical globules while highly charged chains (67% and 92%) are fully extended. End-to-end distances and contour lengths of the extended chains were measured. Statistical analysis shows that the persistence length of these chains depends on the surface where they adsorb. On lipid bilayers, highly ordered monolayers are formed upon increase of the proportion of cationic phospholipids. These results show that highly charged PSS chains behave in a similar manner than the stiffer, hydrophilic DNA when adsorbed on surfaces. It could lead to the design of new types of nanostructured surfaces using polyelectrolyte molecules synthesized with specific properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...