Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cancer Discov ; 13(1): 114-131, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36259971

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) remains a fatal brainstem tumor demanding innovative therapies. As B7-H3 (CD276) is expressed on central nervous system (CNS) tumors, we designed B7-H3-specific chimeric antigen receptor (CAR) T cells, confirmed their preclinical efficacy, and opened BrainChild-03 (NCT04185038), a first-in-human phase I trial administering repeated locoregional B7-H3 CAR T cells to children with recurrent/refractory CNS tumors and DIPG. Here, we report the results of the first three evaluable patients with DIPG (including two who enrolled after progression), who received 40 infusions with no dose-limiting toxicities. One patient had sustained clinical and radiographic improvement through 12 months on study. Patients exhibited correlative evidence of local immune activation and persistent cerebrospinal fluid (CSF) B7-H3 CAR T cells. Targeted mass spectrometry of CSF biospecimens revealed modulation of B7-H3 and critical immune analytes (CD14, CD163, CSF-1, CXCL13, and VCAM-1). Our data suggest the feasibility of repeated intracranial B7-H3 CAR T-cell dosing and that intracranial delivery may induce local immune activation. SIGNIFICANCE: This is the first report of repeatedly dosed intracranial B7-H3 CAR T cells for patients with DIPG and includes preliminary tolerability, the detection of CAR T cells in the CSF, CSF cytokine elevations supporting locoregional immune activation, and the feasibility of serial mass spectrometry from both serum and CSF. This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Humans , B7 Antigens , Brain Stem Neoplasms/therapy , T-Lymphocytes
2.
Blood Adv ; 7(6): 1001-1010, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36006611

ABSTRACT

There is a need for biomarkers to predict and measure the severity of immune effector cell-associated neurotoxicity syndrome (ICANS). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) are well-validated biomarkers of astroglial and neuronal injury, respectively. We hypothesized that pretreatment GFAP and NfL levels can predict the risk of subsequent ICANS and that increases in GFAP and NfL levels during treatment reflect ICANS severity. We measured cerebrospinal fluid GFAP (cGFAP) and NfL (cNfL) along with serum NfL (sNfL) levels at pretreatment and day 7 to 10 after chimeric antigen receptor (CAR) T-cell infusion in 3 pediatric cohorts treated with CD19- or CD19/CD22-directed CAR T cells. cGFAP and cNfL levels increased during grade ≥1 ICANS in patients treated with CD19-directed CAR T cells but not in those who received CD19/CD22-directed CAR T cells. The sNfL levels did not increase during ICANS. Prelymphodepletion cGFAP, cNfL, and sNfL levels were not predictive of subsequent ICANS. Elevated baseline cGFAP levels were associated with a history of transplantation. Patients with prior central nervous system (CNS) radiation had higher cNfL levels, and elevated baseline sNfL levels were associated with a history of peripheral neuropathy. Thus, cGFAP and cNfL may be useful biomarkers for measuring the severity of CNS injury during ICANS in children. Elevated baseline levels of cGFAP, cNfL, and sNfL likely reflect the cumulative injury to the central and peripheral nervous systems from prior treatment. However, levels of any of the 3 biomarkers before CAR T-cell infusion did not predict the risk of ICANS.


Subject(s)
Neurotoxicity Syndromes , T-Lymphocytes , Humans , Child , Glial Fibrillary Acidic Protein , Intermediate Filaments , Neurotoxicity Syndromes/diagnosis , Neurotoxicity Syndromes/etiology , Adaptor Proteins, Signal Transducing , Antigens, CD19
3.
Cancer Immunol Res ; 10(7): 856-870, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35580141

ABSTRACT

T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 can induce potent and sustained responses in children with relapsed/refractory acute lymphoblastic leukemia (ALL). The durability of remission is related to the length of time the CAR T cells persist. Efforts to understand differences in persistence have focused on the CAR construct, in particular the costimulatory signaling module of the chimeric receptor. We previously reported a robust intent-to-treat product manufacturing success rate and remission induction rate in children and young adults with recurrent/refractory B-ALL using the SCRI-CAR19v1 product, a second-generation CD19-specific CAR with 4-1BB costimulation coexpressed with the EGFRt cell-surface tag (NCT02028455). Following completion of the phase I study, two changes to CAR T-cell manufacturing were introduced: switching the T-cell activation reagent and omitting midculture EGFRt immunomagnetic selection. We tested the modified manufacturing process and resulting product, designated SCRI-CAR19v2, in a cohort of 21 subjects on the phase II arm of the trial. Here, we describe the unanticipated enhancement in product performance resulting in prolonged persistence and B-cell aplasia and improved leukemia-free survival with SCRI-CAR19v2 as compared with SCRI-CAR19v1.


Subject(s)
Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Antigens, CD19 , Child , Clinical Trials, Phase I as Topic , Humans , Immunotherapy, Adoptive/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Recurrence , T-Lymphocytes , Young Adult
4.
Ann Neurol ; 86(1): 42-54, 2019 07.
Article in English | MEDLINE | ID: mdl-31074527

ABSTRACT

OBJECTIVE: To test whether systemic cytokine release is associated with central nervous system inflammatory responses and glial injury in immune effector cell-associated neurotoxicity syndrome (ICANS) after chimeric antigen receptor (CAR)-T cell therapy in children and young adults. METHODS: We performed a prospective cohort study of clinical manifestations as well as imaging, pathology, CSF, and blood biomarkers on 43 subjects ages 1 to 25 who received CD19-directed CAR/T cells for acute lymphoblastic leukemia (ALL). RESULTS: Neurotoxicity occurred in 19 of 43 (44%) subjects. Nine subjects (21%) had CTCAE grade 3 or 4 neurological symptoms, with no neurotoxicity-related deaths. Reversible delirium, headache, decreased level of consciousness, tremor, and seizures were most commonly observed. Cornell Assessment of Pediatric Delirium (CAPD) scores ≥9 had 94% sensitivity and 33% specificity for grade ≥3 neurotoxicity, and 91% sensitivity and 72% specificity for grade ≥2 neurotoxicity. Neurotoxicity correlated with severity of cytokine release syndrome, abnormal past brain magnetic resonance imaging (MRI), and higher peak CAR-T cell numbers in blood, but not cerebrospinal fluid (CSF). CSF levels of S100 calcium-binding protein B and glial fibrillary acidic protein increased during neurotoxicity, indicating astrocyte injury. There were concomitant increases in CSF white blood cells, protein, interferon-γ (IFNγ), interleukin (IL)-6, IL-10, and granzyme B (GzB), with concurrent elevation of serum IFNγ IL-10, GzB, granulocyte macrophage colony-stimulating factor, macrophage inflammatory protein 1 alpha, and tumor necrosis factor alpha, but not IL-6. We did not find direct evidence of endothelial activation. INTERPRETATION: Our data are most consistent with ICANS as a syndrome of systemic inflammation, which affects the brain through compromise of the neurovascular unit and astrocyte injury. ANN NEUROL 2019.


Subject(s)
Antigens, CD19/adverse effects , Immunotherapy, Adoptive/adverse effects , Neuroglia/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnostic imaging , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adolescent , Adult , Antigens, CD19/administration & dosage , Antigens, CD19/immunology , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunotherapy, Adoptive/trends , Infant , Male , Neuroglia/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Prospective Studies , Young Adult
5.
J Neuroimmunol ; 291: 1-10, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26857488

ABSTRACT

Japanese macaque encephalomyelitis (JME) is an inflammatory demyelinating disease that occurs spontaneously in a colony of Japanese macaques (JM) at the Oregon National Primate Research Center. Animals with JME display clinical signs resembling multiple sclerosis (MS), and magnetic resonance imaging reveals multiple T2-weighted hyperintensities and gadolinium-enhancing lesions in the central nervous system (CNS). Here we undertook studies to determine if JME possesses features of an immune-mediated disease in the CNS. Comparable to MS, the CNS of animals with JME contain active lesions positive for IL-17, CD4+ T cells with Th1 and Th17 phenotypes, CD8+ T cells, and positive CSF findings.


Subject(s)
Central Nervous System/pathology , Encephalomyelitis/embryology , Encephalomyelitis/pathology , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Animals , Antigens, CD/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cytokines/metabolism , Disease Models, Animal , Lymphocytes/metabolism , Lymphocytes/pathology , Macaca , Macrophages/metabolism , Macrophages/pathology , Magnetic Resonance Imaging , Microfilament Proteins/metabolism , Microglia/metabolism , Microglia/pathology , Myelin Basic Protein/metabolism , Nerve Tissue Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL