Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Genes Dev ; 37(15-16): 760-777, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37704377

ABSTRACT

The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.


Subject(s)
Eukaryotic Initiation Factor-4G , Poly(A)-Binding Proteins , Animals , Poly(A)-Binding Proteins/genetics , Neurons , Brain , Mammals
2.
Sci Rep ; 13(1): 5238, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002329

ABSTRACT

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Subject(s)
RNA-Binding Proteins , RNA , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Ribosomal Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Motifs/genetics , Protein Binding , Myogenic Regulatory Factors/metabolism
3.
Nucleic Acids Res ; 50(19): e111, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36018788

ABSTRACT

Modelling both primary sequence and secondary structure preferences for RNA binding proteins (RBPs) remains an ongoing challenge. Current models use varied RNA structure representations and can be difficult to interpret and evaluate. To address these issues, we present a universal RNA motif-finding/scanning strategy, termed PRIESSTESS (Predictive RBP-RNA InterpretablE Sequence-Structure moTif regrESSion), that can be applied to diverse RNA binding datasets. PRIESSTESS identifies dozens of enriched RNA sequence and/or structure motifs that are subsequently reduced to a set of core motifs by logistic regression with LASSO regularization. Importantly, these core motifs are easily visualized and interpreted, and provide a measure of RBP secondary structure specificity. We used PRIESSTESS to interrogate new HTR-SELEX data for 23 RBPs with diverse RNA binding modes and captured known primary sequence and secondary structure preferences for each. Moreover, when applying PRIESSTESS to 144 RBPs across 202 RNA binding datasets, 75% showed an RNA secondary structure preference but only 10% had a preference besides unpaired bases, suggesting that most RBPs simply recognize the accessibility of primary sequences.


Subject(s)
Algorithms , RNA-Binding Proteins , Binding Sites , RNA-Binding Proteins/metabolism , Nucleotide Motifs , RNA/chemistry , Protein Binding
4.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35914531

ABSTRACT

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Subject(s)
Poly A , Polyadenylation , 3' Untranslated Regions , Humans , Poly A/metabolism , RNA, Messenger/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Zinc/metabolism
5.
PLoS Biol ; 20(4): e3001615, 2022 04.
Article in English | MEDLINE | ID: mdl-35476669

ABSTRACT

Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.


Subject(s)
Placenta , RNA-Binding Proteins , Alternative Splicing/genetics , Animals , Eutheria/genetics , Female , Placenta/metabolism , Pregnancy , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
6.
Genome Biol ; 21(1): 195, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32762776

ABSTRACT

BACKGROUND: RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS: We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS: SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , RNA-Binding Proteins/metabolism , Animals , Brain Neoplasms/etiology , Brain Neoplasms/mortality , Brain Neoplasms/therapy , Epigenesis, Genetic , Female , Glioblastoma/etiology , Glioblastoma/mortality , Glioblastoma/therapy , Humans , Male , Mice , Neurogenesis , Phenotype , Prognosis , United States/epidemiology
7.
Nucleic Acids Res ; 47(6): 2856-2870, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30698747

ABSTRACT

Stress hormones bind and activate the glucocorticoid receptor (GR) in many tissues including the brain. We identified arginine and glutamate rich 1 (ARGLU1) in a screen for new modulators of glucocorticoid signaling in the CNS. Biochemical studies show that the glutamate rich C-terminus of ARGLU1 coactivates multiple nuclear receptors including the glucocorticoid receptor (GR) and the arginine rich N-terminus interacts with splicing factors and binds to RNA. RNA-seq of neural cells depleted of ARGLU1 revealed significant changes in the expression and alternative splicing of distinct genes involved in neurogenesis. Loss of ARGLU1 is embryonic lethal in mice, and knockdown in zebrafish causes neurodevelopmental and heart defects. Treatment with dexamethasone, a GR activator, also induces changes in the pattern of alternatively spliced genes, many of which were lost when ARGLU1 was absent. Importantly, the genes found to be alternatively spliced in response to glucocorticoid treatment were distinct from those under transcriptional control by GR, suggesting an additional mechanism of glucocorticoid action is present in neural cells. Our results thus show that ARGLU1 is a novel factor for embryonic development that modulates basal transcription and alternative splicing in neural cells with consequences for glucocorticoid signaling.


Subject(s)
Embryonic Development , Glucocorticoids/pharmacology , Intracellular Signaling Peptides and Proteins/physiology , RNA Splicing/genetics , Transcriptional Activation/genetics , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Animals, Genetically Modified , Cells, Cultured , Embryo, Nonmammalian , Embryonic Development/drug effects , Embryonic Development/genetics , Glucocorticoids/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Neurogenesis/drug effects , Neurogenesis/genetics , RNA Splicing/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Stress, Physiological/drug effects , Stress, Physiological/genetics , Trans-Activators/physiology , Transcriptional Activation/drug effects , Zebrafish
8.
Elife ; 72018 12 21.
Article in English | MEDLINE | ID: mdl-30575518

ABSTRACT

Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 is a bona fide RNA binding protein and, along with RNA-seq data point to a small RNA independent role for NHL-2 in regulating transcripts at the level of RNA stability. Collectively, our data implicate NHL-2 as an essential hub of gene regulatory activity in both the germline and soma.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Carrier Proteins/metabolism , Germ Cells/metabolism , RNA Interference , Animals , Chromatin/metabolism , Gene Regulatory Networks
9.
ACS Chem Biol ; 13(10): 3000-3010, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30141626

ABSTRACT

Mutations of EXOSC3 have been linked to the rare neurological disorder known as Pontocerebellar Hypoplasia type 1B (PCH1B). EXOSC3 is one of three putative RNA-binding structural cap proteins that guide RNA into the RNA exosome, the cellular machinery that degrades RNA. Using RNAcompete, we identified a G-rich RNA motif binding to EXOSC3. Surface plasmon resonance (SPR) and microscale thermophoresis (MST) indicated an affinity in the low micromolar range of EXOSC3 for long and short G-rich RNA sequences. Although several PCH1B-causing mutations in EXOSC3 did not engage a specific RNA motif as shown by RNAcompete, they exhibited lower binding affinity to G-rich RNA as demonstrated by MST. To test the hypothesis that modification of the RNA-protein interface in EXOSC3 mutants may be phenocopied by small molecules, we performed an in-silico screen of 50 000 small molecules and used enzyme-linked immunosorbant assays (ELISAs) and MST to assess the ability of the molecules to inhibit RNA-binding by EXOSC3. We identified a small molecule, EXOSC3-RNA disrupting (ERD) compound 3 (ERD03), which ( i) bound specifically to EXOSC3 in saturation transfer difference nuclear magnetic resonance (STD-NMR), ( ii) disrupted the EXOSC3-RNA interaction in a concentration-dependent manner, and ( iii) produced a PCH1B-like phenotype with a 50% reduction in the cerebellum and an abnormally curved spine in zebrafish embryos. This compound also induced modification of zebrafish RNA expression levels similar to that observed with a morpholino against EXOSC3. To our knowledge, this is the first example of a small molecule obtained by rational design that models the abnormal developmental effects of a neurodegenerative disease in a whole organism.


Subject(s)
Disease Models, Animal , Exosome Multienzyme Ribonuclease Complex/metabolism , Isoquinolines/pharmacology , Isoquinolines/toxicity , Olivopontocerebellar Atrophies/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Zebrafish/abnormalities , Animals , Atrophy , Cerebellum/pathology , Down-Regulation , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/genetics , Gene Knockdown Techniques , Humans , Isoquinolines/metabolism , Molecular Docking Simulation , Mutation , Olivopontocerebellar Atrophies/chemically induced , Olivopontocerebellar Atrophies/pathology , Phenotype , Protein Binding , Protein Domains , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Spinal Curvatures/chemically induced , Transcriptome/drug effects , Up-Regulation
10.
Cancer Cell ; 32(1): 101-114.e8, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28697339

ABSTRACT

Global transcriptomic imbalance is a ubiquitous feature associated with cancer, including hepatocellular carcinoma (HCC). Analyses of 1,225 clinical HCC samples revealed that a large numbers of RNA binding proteins (RBPs) are dysregulated and that RBP dysregulation is associated with poor prognosis. We further identified that oncogenic activation of a top candidate RBP, negative elongation factor E (NELFE), via somatic copy-number alterations enhanced MYC signaling and promoted HCC progression. Interestingly, NELFE induces a unique tumor transcriptome by selectively regulating MYC-associated genes. Thus, our results revealed NELFE as an oncogenic protein that may contribute to transcriptome imbalance in HCC through the regulation of MYC signaling.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/physiology , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Methods ; 126: 18-28, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28651966

ABSTRACT

RNA-binding proteins recognize RNA sequences and structures, but there is currently no systematic and accurate method to derive large (>12base) motifs de novo that reflect a combination of intrinsic preference to both sequence and structure. To address this absence, we introduce RNAcompete-S, which couples a single-step competitive binding reaction with an excess of random RNA 40-mers to a custom computational pipeline for interrogation of the bound RNA sequences and derivation of SSMs (Sequence and Structure Models). RNAcompete-S confirms that HuR, QKI, and SRSF1 prefer binding sites that are single stranded, and recapitulates known 8-10bp sequence and structure preferences for Vts1p and RBMY. We also derive an 18-base long SSM for Drosophila SLBP, which to our knowledge has not been previously determined by selections from pure random sequence, and accurately discriminates human replication-dependent histone mRNAs. Thus, RNAcompete-S enables accurate identification of large, intrinsic sequence-structure specificities with a uniform assay.


Subject(s)
Base Sequence/genetics , High-Throughput Nucleotide Sequencing/methods , RNA-Binding Proteins/genetics , Humans , RNA-Binding Proteins/chemistry , Sequence Analysis, RNA/methods
12.
Nucleic Acids Res ; 45(11): 6761-6774, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28379442

ABSTRACT

RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1-ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping.


Subject(s)
RNA-Binding Proteins/physiology , Autoantigens , Base Sequence , Binding Sites , Exons , HEK293 Cells , Humans , Protein Binding , RNA Splicing , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , Zinc Fingers
13.
Mol Cell ; 65(3): 539-553.e7, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28157508

ABSTRACT

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.


Subject(s)
Alternative Splicing , Gene Regulatory Networks , Sequence Analysis, RNA/methods , Transcription Factors/metabolism , Animals , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , HEK293 Cells , Humans , Mice , Neurons/cytology , Neurons/metabolism , RNA, Messenger/genetics
14.
Methods ; 118-119: 3-15, 2017 04 15.
Article in English | MEDLINE | ID: mdl-27956239

ABSTRACT

RNA-binding proteins (RBPs) participate in diverse cellular processes and have important roles in human development and disease. The human genome, and that of many other eukaryotes, encodes hundreds of RBPs that contain canonical sequence-specific RNA-binding domains (RBDs) as well as numerous other unconventional RNA binding proteins (ucRBPs). ucRBPs physically associate with RNA but lack common RBDs. The degree to which these proteins bind RNA, in a sequence specific manner, is unknown. Here, we provide a detailed description of both the laboratory and data processing methods for RNAcompete, a method we have previously used to analyze the RNA binding preferences of hundreds of RBD-containing RBPs, from diverse eukaryotes. We also determine the RNA-binding preferences for two human ucRBPs, NUDT21 and CNBP, and use this analysis to exemplify the RNAcompete pipeline. The results of our RNAcompete experiments are consistent with independent RNA-binding data for these proteins and demonstrate the utility of RNAcompete for analyzing the growing repertoire of ucRBPs.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/genetics , Microarray Analysis/methods , RNA-Binding Proteins/genetics , RNA/chemistry , Animals , Base Sequence , Binding Sites , Cleavage And Polyadenylation Specificity Factor/metabolism , Cloning, Molecular , DNA Primers/chemistry , DNA Primers/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Protein Binding , Protein Domains , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
15.
Elife ; 52016 08 09.
Article in English | MEDLINE | ID: mdl-27502555

ABSTRACT

In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans.


Subject(s)
Alternative Splicing , Gene Expression Regulation , Planarians/genetics , Planarians/physiology , RNA-Binding Proteins/metabolism , Stem Cells/physiology , Animals , Cell Differentiation , Cell Proliferation , Gene Knockdown Techniques , RNA-Binding Proteins/genetics
16.
Cell Rep ; 13(6): 1206-1220, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26527002

ABSTRACT

TRIM-NHL proteins are conserved among metazoans and control cell fate decisions in various stem cell linages. The Drosophila TRIM-NHL protein Brain tumor (Brat) directs differentiation of neuronal stem cells by suppressing self-renewal factors. Brat is an RNA-binding protein and functions as a translational repressor. However, it is unknown which RNAs Brat regulates and how RNA-binding specificity is achieved. Using RNA immunoprecipitation and RNAcompete, we identify Brat-bound mRNAs in Drosophila embryos and define consensus binding motifs for Brat as well as a number of additional TRIM-NHL proteins, indicating that TRIM-NHL proteins are conserved, sequence-specific RNA-binding proteins. We demonstrate that Brat-mediated repression and direct RNA-binding depend on the identified motif and show that binding of the localization factor Miranda to the Brat-NHL domain inhibits Brat activity. Finally, to unravel the sequence specificity of the NHL domain, we crystallize the Brat-NHL domain in complex with RNA and present a high-resolution protein-RNA structure of this fold.


Subject(s)
DNA-Binding Proteins/chemistry , Drosophila Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Molecular Sequence Data , Protein Binding , RNA, Messenger/metabolism
17.
Genome Biol ; 16: 94, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25962635

ABSTRACT

BACKGROUND: Brain tumor (BRAT) is a Drosophila member of the TRIM-NHL protein family. This family is conserved among metazoans and its members function as post-transcriptional regulators. BRAT was thought to be recruited to mRNAs indirectly through interaction with the RNA-binding protein Pumilio (PUM). However, it has recently been demonstrated that BRAT directly binds to RNA. The precise sequence recognized by BRAT, the extent of BRAT-mediated regulation, and the exact roles of PUM and BRAT in post-transcriptional regulation are unknown. RESULTS: Genome-wide identification of transcripts associated with BRAT or with PUM in Drosophila embryos shows that they bind largely non-overlapping sets of mRNAs. BRAT binds mRNAs that encode proteins associated with a variety of functions, many of which are distinct from those implemented by PUM-associated transcripts. Computational analysis of in vitro and in vivo data identified a novel RNA motif recognized by BRAT that confers BRAT-mediated regulation in tissue culture cells. The regulatory status of BRAT-associated mRNAs suggests a prominent role for BRAT in post-transcriptional regulation, including a previously unidentified role in transcript degradation. Transcriptomic analysis of embryos lacking functional BRAT reveals an important role in mediating the decay of hundreds of maternal mRNAs during the maternal-to-zygotic transition. CONCLUSIONS: Our results represent the first genome-wide analysis of the mRNAs associated with a TRIM-NHL protein and the first identification of an RNA motif bound by this protein family. BRAT is a prominent post-transcriptional regulator in the early embryo through mechanisms that are largely independent of PUM.


Subject(s)
Brain Neoplasms/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila/genetics , RNA, Messenger, Stored/genetics , RNA-Binding Proteins/genetics , Animals , Binding Sites , Brain Neoplasms/diagnosis , DNA-Binding Proteins/metabolism , Drosophila/embryology , Drosophila Proteins/metabolism , Epigenetic Repression , Female , Gene Expression Regulation, Developmental , Genetic Association Studies , Mutation , Nuclear Proteins , RNA, Messenger, Stored/metabolism , RNA-Binding Proteins/metabolism , Tissue Culture Techniques , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Mol Cell ; 54(6): 946-959, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24910101

ABSTRACT

Alternative splicing is important for the development and function of the nervous system, but little is known about the differences in alternative splicing between distinct types of neurons. Furthermore, the factors that control cell-type-specific splicing and the physiological roles of these alternative isoforms are unclear. By monitoring alternative splicing at single-cell resolution in Caenorhabditis elegans, we demonstrate that splicing patterns in different neurons are often distinct and highly regulated. We identify two conserved RNA-binding proteins, UNC-75/CELF and EXC-7/Hu/ELAV, which regulate overlapping networks of splicing events in GABAergic and cholinergic neurons. We use the UNC-75 exon network to discover regulators of synaptic transmission and to identify unique roles for isoforms of UNC-64/Syntaxin, a protein required for synaptic vesicle fusion. Our results indicate that combinatorial regulation of alternative splicing in distinct neurons provides a mechanism to specialize metazoan nervous systems.


Subject(s)
Alternative Splicing/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Cholinergic Neurons/cytology , GABAergic Neurons/cytology , RNA-Binding Proteins/physiology , Synaptic Transmission/genetics , Syntaxin 1/genetics , Animals , Cholinergic Neurons/metabolism , GABAergic Neurons/metabolism , Mutation , Nervous System/embryology , Nervous System/growth & development , Protein Isoforms/genetics , RNA-Binding Proteins/genetics , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
19.
Genome Res ; 24(5): 775-85, 2014 May.
Article in English | MEDLINE | ID: mdl-24663241

ABSTRACT

It is commonly known that mammalian microRNAs (miRNAs) guide the RNA-induced silencing complex (RISC) to target mRNAs through the seed-pairing rule. However, recent experiments that coimmunoprecipitate the Argonaute proteins (AGOs), the central catalytic component of RISC, have consistently revealed extensive AGO-associated mRNAs that lack seed complementarity with miRNAs. We herein test the hypothesis that AGO has its own binding preference within target mRNAs, independent of guide miRNAs. By systematically analyzing the data from in vivo cross-linking experiments with human AGOs, we have identified a structurally accessible and evolutionarily conserved region (∼10 nucleotides in length) that alone can accurately predict AGO-mRNA associations, independent of the presence of miRNA binding sites. Within this region, we further identified an enriched motif that was replicable on independent AGO-immunoprecipitation data sets. We used RNAcompete to enumerate the RNA-binding preference of human AGO2 to all possible 7-mer RNA sequences and validated the AGO motif in vitro. These findings reveal a novel function of AGOs as sequence-specific RNA-binding proteins, which may aid miRNAs in recognizing their targets with high specificity.


Subject(s)
Argonaute Proteins/metabolism , RNA, Messenger/metabolism , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Base Sequence , Binding Sites , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Nucleotide Motifs , Protein Binding , RNA, Messenger/chemistry , RNA, Messenger/genetics
20.
Proc Natl Acad Sci U S A ; 111(7): 2542-7, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24550280

ABSTRACT

The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins ß-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-µM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.


Subject(s)
Bacteriophage M13/genetics , PDZ Domains/genetics , PDZ Domains/physiology , Peptide Library , Protein Interaction Mapping/methods , Proteomics/methods , Computational Biology , DNA Primers/genetics , Humans , Microarray Analysis
SELECTION OF CITATIONS
SEARCH DETAIL