Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neuro Oncol ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164213

ABSTRACT

BACKGROUND: With the significant shift in the classification, risk stratification, and standards of care for gliomas, we sought to understand how the overall survival of patients with these tumors is impacted by molecular features, clinical metrics, and treatment received. METHODS: We assembled a cohort of patients with a histopathologically diagnosed glioma from The Cancer Genome Atlas, Project Genomics Evidence Neoplasia Information Exchange, and Dana-Farber Cancer Institute/Brigham and Women's Hospital. This incorporated retrospective clinical, histological, and molecular data alongside prospective assessment of patient survival. RESULTS: 4,400 gliomas were identified: 2,195 glioblastoma, 1,198 IDH1/2-mutant astrocytoma, 531 oligodendroglioma, 271 other IDH1/2-wildtype glioma, and 205 pediatric-type glioma. Molecular classification updated 27.2% of gliomas from their original histopathologic diagnosis. Examining the distribution of molecular alterations across glioma subtypes revealed mutually exclusive alterations within tumorigenic pathways. Non-TCGA patients had significantly improved overall survival compared to TCGA patients, with 26.7%, 55.6%, and 127.8% longer survival for glioblastoma, IDH1/2-mutant astrocytoma, and oligodendroglioma respectively (all p<0.01). Several prognostic features were characterized, including NF1 alteration and 21q loss in glioblastoma, and EGFR amplification and 22q loss in IDH1/2-mutant astrocytoma. Leveraging the size of this cohort, nomograms were generated to assess the probability of overall survival based on patient age, the molecular features of a tumor, and the treatment received. CONCLUSIONS: By applying modern molecular criteria, we characterize the genomic diversity across glioma subtypes, identify clinically applicable prognostic features, and provide a contemporary update on patient survival to serve as a reference for ongoing investigations.

2.
Nat Commun ; 15(1): 6870, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39127809

ABSTRACT

Current treatment outcome of patients with glioblastoma (GBM) remains poor. Following standard therapy, recurrence is universal with limited survival. Tumors from 173 GBM patients are analysed for somatic mutations to generate a personalized peptide vaccine targeting tumor-specific neoantigens. All patients were treated within the scope of an individual healing attempt. Among all vaccinated patients, including 70 treated prior to progression (primary) and 103 treated after progression (recurrent), the median overall survival from first diagnosis is 31.9 months (95% CI: 25.0-36.5). Adverse events are infrequent and are predominantly grade 1 or 2. A vaccine-induced immune response to at least one of the vaccinated peptides is detected in blood samples of 87 of 97 (90%) monitored patients. Vaccine-specific T-cell responses are durable in most patients. Significantly prolonged survival is observed for patients with multiple vaccine-induced T-cell responses (53 months) compared to those with no/low induced responses (27 months; P = 0.03). Altogether, our results highlight that the application of personalized neoantigen-targeting peptide vaccine is feasible and represents a promising potential treatment option for GBM patients.


Subject(s)
Brain Neoplasms , Cancer Vaccines , Glioblastoma , Precision Medicine , Vaccines, Subunit , Humans , Glioblastoma/immunology , Glioblastoma/therapy , Female , Vaccines, Subunit/immunology , Vaccines, Subunit/therapeutic use , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cancer Vaccines/administration & dosage , Male , Middle Aged , Precision Medicine/methods , Aged , Adult , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , Treatment Outcome , Protein Subunit Vaccines
3.
Commun Biol ; 7(1): 793, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951146

ABSTRACT

Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.


Subject(s)
Adipose Tissue, Brown , Neuroinflammatory Diseases , Animals , Humans , Adipose Tissue, Brown/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Bone Marrow/metabolism , Mice , Male , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/metabolism , Mice, Inbred C57BL , Female , Multiple Sclerosis/pathology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnostic imaging , Positron-Emission Tomography
4.
Neuro Oncol ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082676

ABSTRACT

BACKGROUND: The frequency and significance of IDH mutations in glioma across age groups is incompletely understood. We performed a multi-center retrospective age-stratified comparison of patients with IDH-mutant gliomas to identify age-specific differences in clinico-genomic features, treatments, and outcomes. METHODS: Clinical, histologic, and sequencing data from patients with IDH-mutant, grade 2-4 gliomas, were collected from collaborating institutions between 2013-2019. Patients were categorized as pediatric (<19y), YA (19-39y) or older adult (≥40y). Clinical presentation, treatment, histologic, and molecular features were compared across age categories using Fisher's exact test or analysis-of-variance. Cox proportional-hazards regression was used to determine association of age and other covariates with overall (OS) and progression-free survival (PFS). RESULTS: We identified a cohort of 379 patients (204 YA) with IDH-mutant glioma with clinical data. There were 155 (41%) oligodendrogliomas and 224 (59%) astrocytomas. YA showed significantly shorter PFS and shorter median time-to-malignant transformation (MT) compared to pediatric and adult groups, but no significant OS difference. Adjusting for pathology type, extent of resection, and upfront therapy in multivariable analysis, the YA group was independently prognostic of shorter PFS than pediatric and adult groups. Among astrocytomas, CDK4/6 copy number amplifications were associated with both shorter PFS and shorter OS. Among oligodendrogliomas, PIK3CA and CDKN2A/2B alterations were associated with shorter OS. CONCLUSIONS: IDH-mutant glioma YA patients had significantly shorter PFS and time to MT but did not differ in OS compared to pediatric and adult groups. Treatment approach varied significantly by patient age and warrant further study as addressable age-associated outcome drivers.

5.
Article in English | MEDLINE | ID: mdl-38926092

ABSTRACT

Radiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults. This article provides an overview of significant updates to the criteria including (1) the use of a unified set of criteria for high and low grade gliomas in adults; (2) the use of the post-radiotherapy MRI scan as the baseline for evaluation in newly diagnosed high-grade gliomas; (3) the option for the trial to mandate a confirmation scan to more reliably distinguish pseudoprogression from tumor progression; (4) the option of using volumetric tumor measurements; and (5) the removal of subjective non-enhancing tumor evaluations in predominantly enhancing gliomas (except for specific therapeutic modalities). Step-by-step pragmatic guidance is hereby provided for the neuroradiologist and imaging core lab involved in operationalization and technical execution of RANO 2.0 in clinical trials, including the display of representative cases and in-depth discussion of challenging scenarios.ABBREVIATIONS: BTIP = Brain Tumor Imaging Protocol; CE = Contrast-Enhancing; CNS = Central Nervous System; CR = Complete Response; ECOG = Eastern Cooperative Oncology Group; HGG = High-Grade Glioma; IDH = Isocitrate Dehydrogenase; IRF = Independent Radiologic Facility; LGG = Low-Grade Glioma; KPS = Karnofsky Performance Status; MR = Minor Response; mRANO = Modified RANO; NANO = Neurological Assessment in Neuro-Oncology; ORR = Objective Response Rate; OS = Overall Survival; PD = Progressive Disease; PFS = Progression-Free Survival; PR = Partial Response; PsP = Pseudoprogression; RANO = Response Assessment in Neuro-Oncology; RECIST = Response Evaluation Criteria In Solid Tumors; RT = Radiation Therapy; SD = Stable Disease; Tx = Treatment.

6.
Front Surg ; 11: 1356660, 2024.
Article in English | MEDLINE | ID: mdl-38840975

ABSTRACT

Intrinsic, expansile pontine tumors typically occur in the pediatric population. These tumors characteristically present as diffuse intrinsic pontine glioma (DIPG), which is now considered as diffuse midline glioma (DMG), H3K27-mutated of the pons. DIPG has limited treatment options and a poor prognosis, and the value of tissue diagnosis from an invasive biopsy remains controversial. This study presents the case of a 19-year-old female with clinical and imaging hallmarks of DIPG, who underwent a biopsy of a tumor in the region of the right middle cerebellar peduncle. Her lesional cells were negative for H3K27M alterations and had low-grade histologic features. Next-generation sequencing revealed a frameshift mutation in the NF1 gene as the likely driver mutation. These features suggest a diagnosis of a low-grade glioma associated with NF1 loss of function, with far-reaching consequences regarding both treatment strategy and prognosis. This case provides support for the utility of diagnostic tissue biopsy in cases of suspected DIPG.

7.
J Control Release ; 372: 194-208, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897294

ABSTRACT

PURPOSE: We report our experience disrupting the blood-brain barrier (BBB) to improve drug delivery in glioblastoma patients receiving temozolomide chemotherapy. The goals of this retrospective analysis were to compare MRI-based measures of BBB disruption and vascular damage to the exposure levels, acoustic emissions data, and acoustic simulations. We also simulated the cavitation detectors. METHODS: Monthly BBB disruption (BBBD) was performed using a 220 kHz hemispherical phased array focused ultrasound system (Exablate Neuro, InSightec) and Definity microbubbles (Lantheus) over 38 sessions in nine patients. Exposure levels were actively controlled via the cavitation dose obtained by monitoring subharmonic acoustic emissions. The acoustic field and sensitivity profile of the cavitation detection system were simulated. Exposure levels and cavitation metrics were compared to the level of BBBD evident in contrast-enhanced MRI and to hypointense regions in T2*-weighted MRI. RESULTS: Our treatment strategy evolved from using a relatively high cavitation dose goal to a lower goal and longer sonication duration and ultimately resulted in BBBD across the treatment volume with minimal petechiae. Subsonication-level feedback control of the exposure using acoustic emissions also improved consistency. Simulations of the acoustic field suggest that reflections and standing waves appear when the focus is placed near the skull, but their effects can be mitigated with aberration correction. Simulating the cavitation detectors suggest variations in the sensitivity profile across the treatment volume and between patients. A correlation was observed with the cavitation dose, BBBD and petechial hemorrhage in 8/9 patients, but substantial variability was evident. Analysis of the cavitation spectra found that most bursts did not contain wideband emissions, a signature of inertial cavitation, but biggest contribution to the cavitation dose - the metric used to control the procedure - came from bursts with wideband emissions. CONCLUSION: Using a low subharmonic cavitation dose with a longer duration resulted in BBBD with minimal petechiae. The correlation between cavitation dose and outcomes demonstrates the benefits of feedback control based on acoustic emissions, although more work is needed to reduce variability. Acoustic simulations could improve focusing near the skull and inform our analysis of acoustic emissions. Monitoring additional frequency bands and improving the sensitivity of the cavitation detection could provide signatures of microbubble activity associated with BBB disruption that were undetected here and could improve our ability to achieve BBB disruption without vascular damage.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Glioblastoma , Magnetic Resonance Imaging , Microbubbles , Humans , Blood-Brain Barrier/metabolism , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Magnetic Resonance Imaging/methods , Retrospective Studies , Middle Aged , Temozolomide/administration & dosage , Temozolomide/therapeutic use , Male , Antineoplastic Agents, Alkylating/administration & dosage , Female , Drug Delivery Systems , Aged , Acoustics , Adult , Computer Simulation
8.
IEEE Trans Biomed Eng ; PP2024 May 30.
Article in English | MEDLINE | ID: mdl-38814760

ABSTRACT

OBJECTIVE: Holographic methods can be used with phased array transducers to shape an ultrasound field. We tested a simple method to create holograms with a hemispherical 1024-element phased array transducer and explored how it could benefit ultrasound-mediated blood-brain barrier (BBB) disruption. METHODS: With this method, individual acoustic simulations for each element of the transducer were simultaneously loaded into computer memory. Each element's phase was systematically modulated until the combined field matched a desired pattern. The method was evaluated with a 220 kHz transducer being tested clinically to enhance drug delivery via BBB disruption. The holograms were evaluated in a tissue-mimicking phantom and in vivo in experiments disrupting the BBB in rats and in a macaque. We also explored whether this approach could mitigate secondary reflections from the skull using simulations of transcranial focusing in clinical treatments of transcranial sonication for BBB disruption. RESULTS: This approach can enlarge the focal volume in a patient-specific manner and could reduce the number of sonication targets needed to disrupt large volumes, improve the homogeneity of the disruption, and improve our ability to detect microbubble activity in tissues with low vascular density. Simulations suggest that the method could also mitigate secondary reflections during transcranial sonication.

9.
Clin Cancer Res ; 30(7): 1327-1337, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38252427

ABSTRACT

PURPOSE: Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN: We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS: Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS: Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Nuclear Proteins/genetics , Transcription Factors/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Genomics , Seizures/genetics , Mutation , DNA Helicases/genetics , Bromodomain Containing Proteins , Cell Cycle Proteins/genetics
10.
Clin Transl Radiat Oncol ; 44: 100697, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38046107

ABSTRACT

Introduction and background: While recurrent glioblastoma patients are often treated with re-irradiation, there is limited data on the use of re-irradiation in the setting of bevacizumab (BEV), temozolomide (TMZ) re-challenge, or immune checkpoint inhibition (ICI). We describe target delineation in patients with prior anti-angiogenic therapy, assess safety and efficacy of re-irradiation, and evaluate patterns of recurrence. Materials and methods: Patients with a histologically confirmed diagnosis of glioblastoma treated at a single institution between 2013 and 2021 with re-irradiation were included. Tumor, treatment and clinical data were collected. Logistic and Cox regression analysis were used for statistical analysis. Results: One hundred and seventeen recurrent glioblastoma patients were identified, receiving 129 courses of re-irradiation. In 66 % (85/129) of cases, patients had prior BEV. In the 80 patients (62 %) with available re-irradiation plans, 20 (25 %) had all T2/FLAIR abnormality included in the gross tumor volume (GTV). Median overall survival (OS) for the cohort was 7.3 months, and median progression-free survival (PFS) was 3.6 months. Acute CTCAE grade ≥ 3 toxicity occurred in 8 % of cases. Concurrent use of TMZ or ICI was not associated with improved OS nor PFS. On multivariable analysis, higher KPS was significantly associated with longer OS (p < 0.01). On subgroup analysis, patients with prior BEV had significantly more marginal recurrences than those without (26 % vs. 13 %, p < 0.01). Conclusion: Re-irradiation can be safely employed in recurrent glioblastoma patients. Marginal recurrence was more frequent in patients with prior BEV, suggesting a need to consider more inclusive treatment volumes incorporating T2/FLAIR abnormality.

11.
Front Immunol ; 14: 1297932, 2023.
Article in English | MEDLINE | ID: mdl-38213329

ABSTRACT

Background: The GL261 and CT2A syngeneic tumor lines are frequently used as immunocompetent orthotopic mouse models of human glioblastoma (huGBM) but demonstrate distinct differences in their responses to immunotherapy. Methods: To decipher the cell-intrinsic mechanisms that drive immunotherapy resistance in CT2A-luc and to define the aspects of human cancer biology that these lines can best model, we systematically compared their characteristics using whole exome and transcriptome sequencing, and protein analysis through immunohistochemistry, Western blot, flow cytometry, immunopeptidomics, and phosphopeptidomics. Results: The transcriptional profiles of GL261-luc2 and CT2A-luc tumors resembled those of some huGBMs, despite neither line sharing the essential genetic or histologic features of huGBM. Both models exhibited striking hypermutation, with clonal hotspot mutations in RAS genes (Kras p.G12C in GL261-luc2 and Nras p.Q61L in CT2A-luc). CT2A-luc distinctly displayed mesenchymal differentiation, upregulated angiogenesis, and multiple defects in antigen presentation machinery (e.g. Tap1 p.Y488C and Psmb8 p.A275P mutations) and interferon response pathways (e.g. copy number losses of loci including IFN genes and reduced phosphorylation of JAK/STAT pathway members). The defect in MHC class I expression could be overcome in CT2A-luc by interferon-γ treatment, which may underlie the modest efficacy of some immunotherapy combinations. Additionally, CT2A-luc demonstrated substantial baseline secretion of the CCL-2, CCL-5, and CCL-22 chemokines, which play important roles as myeloid chemoattractants. Conclusion: Although the clinical contexts that can be modeled by GL261 and CT2A for huGBM are limited, CT2A may be an informative model of immunotherapy resistance due to its deficits in antigen presentation machinery and interferon response pathways.


Subject(s)
Antigen Presentation , Glioblastoma , Humans , Animals , Mice , Janus Kinases , Signal Transduction , STAT Transcription Factors , Interferon-gamma , Immunotherapy
12.
medRxiv ; 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38234840

ABSTRACT

Glioblastoma (GBM) is a primary brain cancer with an abysmal prognosis and few effective therapies. The ability to investigate the tumor microenvironment before and during treatment would greatly enhance both understanding of disease response and progression, as well as the delivery and impact of therapeutics. Stereotactic biopsies are a routine surgical procedure performed primarily for diagnostic histopathologic purposes. The role of investigative biopsies - tissue sampling for the purpose of understanding tumor microenvironmental responses to treatment using integrated multi-modal molecular analyses ('Multi-omics") has yet to be defined. Secondly, it is unknown whether comparatively small tissue samples from brain biopsies can yield sufficient information with such methods. Here we adapt stereotactic needle core biopsy tissue in two separate patients. In the first patient with recurrent GBM we performed highly resolved multi-omics analysis methods including single cell RNA sequencing, spatial-transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics from biopsy tissue that was obtained from a single procedure. In a second patient we analyzed multi-regional core biopsies to decipher spatial and genomic variance. We also investigated the utility of stereotactic biopsies as a method for generating patient derived xenograft models in a separate patient cohort. Dataset integration across modalities showed good correspondence between spatial modalities, highlighted immune cell associated metabolic pathways and revealed poor correlation between RNA expression and the tumor MHC Class I immunopeptidome. In conclusion, stereotactic needle biopsy cores are of sufficient quality to generate multi-omics data, provide data rich insight into a patient's disease process and tumor immune microenvironment and can be of value in evaluating treatment responses. One sentence summary: Integrative multi-omics analysis of stereotactic needle core biopsies in glioblastoma.

13.
Annu Rev Cancer Biol ; 7: 265-289, 2023 Apr.
Article in English | MEDLINE | ID: mdl-38323268

ABSTRACT

The blood-brain barrier is critically important for the treatment of both primary and metastatic cancers of the central nervous system (CNS). Clinical outcomes for patients with primary CNS tumors are poor and have not significantly improved in decades. As treatments for patients with extracranial solid tumors improve, the incidence of CNS metastases is on the rise due to suboptimal CNS exposure of otherwise systemically active agents. Despite state-of-the art surgical care and increasingly precise radiation therapy, clinical progress is limited by the ability to deliver an effective dose of a therapeutic agent to all cancerous cells. Given the tremendous heterogeneity of CNS cancers, both across cancer subtypes and within a single tumor, and the range of diverse therapies under investigation, a nuanced examination of CNS drug exposure is needed. With a shared goal, common vocabulary, and interdisciplinary collaboration, the field is poised for renewed progress in the treatment of CNS cancers.

SELECTION OF CITATIONS
SEARCH DETAIL