Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ophthalmol Eye Dis ; 6: 43-54, 2014.
Article in English | MEDLINE | ID: mdl-25210480

ABSTRACT

Ischemia/reperfusion (IR) injury has been associated with several retinal pathologies, and a few genes/gene products have been linked to IR injury. However, the big picture of temporal changes, regarding the affected gene networks, pathways, and processes remains to be determined. The purpose of the present study was to investigate initial, intermediate, and later stages to characterize the etiology of IR injury in terms of the pathways affected over time. Analyses indicated that at the initial stage, 0-hour reperfusion following the ischemic period, the ischemia-associated genes were related to changes in metabolism. In contrast, at the 24-hour time point, the signature events in reperfusion injury include enhanced inflammatory and immune responses as well as cell death indicating that this would be a critical period for the development of any interventional therapeutic strategies. Genes in the signal transduction pathways, particularly transmitter receptors, are downregulated at this time. Activation of the complement system pathway clearly plays an important role in the later stages of reperfusion injury. Together, these results demonstrate that the etiology of injury related to IR is characterized by the appearance of specific patterns of gene expression at any given time point during retinal IR injury. These results indicate that evaluation of treatment strategies with respect to time is very critical.

2.
Commun Integr Biol ; 6(5): e24951, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-24228136

ABSTRACT

Micro-RNAs regulate the expression of cellular and tissue phenotypes at a post-transcriptional level through a complex process involving complementary interactions between micro-RNAs and messenger-RNAs. Similar nucleotide interactions have been shown to occur as cross-kingdom events; for example, between plant viruses and plant micro-RNAs and also between animal viruses and animal micro-RNAs. In this study, this view is expanded to look for cross-kingdom similarities between plant virus and human micro-RNA sequences. A method to identify significant nucleotoide sequence similarities between plant viruses and hsa micro-RNAs was created. Initial analyses demonstrate that plant viruses contain nucleotide sequences which exactly match the seed sequences of human micro-RNAs in both parallel and anti-parallel directions. For example, the bean common mosaic virus strain NL4 from Colombia contains sequences that match exactly the seed sequence for micro-RNA of the hsa-mir-1226 in the parallel direction, which suggests a cross-kingdom conservation. Similarly, the rice yellow stunt viral cRNA contains a sequence that is an exact match in the anti-parallel direction to the seed sequence of hsa-micro-RNA let-7b. The functional implications of these results need to be explored. The finding of these cross-kingdom sequence similarities is a useful starting point in support of bench level investigations.

3.
J Neuroimmunol ; 260(1-2): 92-8, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23664693

ABSTRACT

Neuromyelitis optica (NMO) is associated with antibodies to aquaporin 4 (AQP4). We hypothesized that antibodies to AQP4 can be triggered by exposure to environmental proteins. We compared human AQP4 to plant and bacterial proteins to investigate the occurrence of significantly similar structures and sequences. High similarity to a known epitope for NMO-IgG, AQP4(207-232), was observed for corn ZmTIP4-1. NMO and non-NMO sera were assessed for reactivity to AQP4(207-232) and the corn peptide. NMO patient serum showed reactivity to both peptides as well as to plant tissue. These findings warrant further investigation into the role of the environment in NMO etiology.


Subject(s)
Aquaporin 4/genetics , Aquaporin 4/immunology , Epitopes/immunology , Molecular Mimicry/immunology , Neuromyelitis Optica/immunology , Amino Acid Sequence , Animals , Aquaporin 4/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Cross Reactions/immunology , Escherichia coli , Humans , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/immunology , Plasmodium falciparum , Protein Structure, Tertiary , Sheep , Glycine max , Spinacia oleracea , Nicotiana
4.
Front Neurol ; 3: 136, 2012.
Article in English | MEDLINE | ID: mdl-23060854

ABSTRACT

To determine the genetic basis of familial frontotemporal lobar degeneration (FTLD) with amyotrophic lateral sclerosis (ALS) we performed a clinical and genetic analysis of an affected family. A 51-year-old man with behavioral variant FTLD with ALS had a family history of the disease suggestive of autosomal dominant inheritance with incomplete penetrance. Genetic studies in this patient demonstrated the presence of an amplified hexanucleotide repeat (>30) polymorphism in the chromosome 9 open reading frame 72 (C9ORF72) gene which was previously identified as a cause of FTLD. Five others unaffected from the family were negative (all had less than 11 repeats). Because of the clinical and pathological overlap between FTLD and AD we performed a larger genome-wide association study and did not find association of single nucleotide polymorphisms (SNPs) in the C9ORF72 gene with Alzheimer's disease (AD) risk. Bioinformatic analysis of C9ORF72 using the Gene Expression Omnibus database showed expression differences in patients with muscular dystrophy, neural tube defects, and schizophrenia. We also report analysis of gene expression in brain regions using the Allen Human Brain Atlas. Defects in this recently reported gene are now believed to be the most common cause of inherited ALS and an important cause of inherited FTLD. Our work suggests that the gene may also be important in other neurological and psychiatric conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...