Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
FASEB J ; 38(13): e23796, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967302

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , B-Lymphocytes , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/immunology , Animals , Mice , Humans , B-Lymphocytes/immunology , Disease Models, Animal , Mice, Transgenic , Male , Female , Mice, Inbred C57BL , Immunomodulation , Middle Aged
2.
EJHaem ; 5(3): 573-577, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895092

ABSTRACT

Myeloproliferative neoplasms (MPNs) are associated with immune dysregulation and increased susceptibility to infection, emphasizing the importance of vaccination for patients. This pilot study evaluated immune responses to influenza vaccination in MPN patients compared with healthy donors using mass cytometry and serology. We observed diminished CXCR5+ B-cell, CXCR3+ T-cell, activated CD127+ memory T-cell subsets, and a trend toward lower hemagglutinin inhibition titer in MPN patients. These results indicate that patients with MPN exhibit distinct responses to influenza vaccination suggestive of impaired migration to lymphoid organs and T-cell maturation which may impact the development of protective immunity.

3.
Front Immunol ; 14: 1249581, 2023.
Article in English | MEDLINE | ID: mdl-37885896

ABSTRACT

Introduction: Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling. Methods: Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36). Results: Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1ß responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1ß-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals. Discussion: These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.


Subject(s)
Coxiella burnetii , Q Fever , Humans , Tumor Necrosis Factor-alpha , Interleukin-2 , Interleukin-6 , Cytokines , Immunity, Innate
4.
FASEB Bioadv ; 5(4): 156-170, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37020749

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide. Surgery and chemoradiation are the standard of care in early stages of non-small cell lung cancer (NSCLC), while immunotherapy is the standard of care in late-stage NSCLC. The immune composition of the tumor microenvironment (TME) is recognized as an indicator for responsiveness to immunotherapy, although much remains unknown about its role in responsiveness to surgery or chemoradiation. In this pilot study, we characterized the NSCLC TME using mass cytometry (CyTOF) and bulk RNA sequencing (RNA-Seq) with deconvolution of RNA-Seq being performed by Kassandra, a recently published deconvolution tool. Stratification of patients based on the intratumoral abundance of B cells identified that the B-cell rich patient group had increased expression of CXCL13 and greater abundance of PD1+ CD8 T cells. The presence of B cells and PD1+ CD8 T cells correlated positively with the presence of intratumoral tertiary lymphoid structures (TLS). We then assessed the predictive and prognostic utility of these cell types and TLS within publicly available stage 3 and 4 lung adenocarcinoma (LUAD) RNA-Seq datasets. As previously described by others, pre-treatment expression of intratumoral 12-chemokine TLS gene signature is associated with progression free survival (PFS) in patients who receive treatment with immune checkpoint inhibitors (ICI). Notably and unexpectedly pre-treatment percentages of intratumoral B cells are associated with PFS in patients who receive surgery, chemotherapy, or radiation. Further studies to confirm these findings would allow for more effective patient selection for both ICI and non-ICI treatments.

5.
Sci Transl Med ; 15(690): eadd5318, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018417

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) has many potential applications beyond current standard indications, including treatment of autoimmune disease, gene therapy, and transplant tolerance induction. However, severe myelosuppression and other toxicities after myeloablative conditioning regimens have hampered wider clinical use. To achieve donor hematopoietic stem cell (HSC) engraftment, it appears essential to establish niches for the donor HSCs by depleting the host HSCs. To date, this has been achievable only by nonselective treatments such as irradiation or chemotherapeutic drugs. An approach that is capable of more selectively depleting host HSCs is needed to widen the clinical application of HSCT. Here, we show in a clinically relevant nonhuman primate model that selective inhibition of B cell lymphoma 2 (Bcl-2) promoted hematopoietic chimerism and renal allograft tolerance after partial deletion of HSCs and effective peripheral lymphocyte deletion while preserving myeloid cells and regulatory T cells. Although Bcl-2 inhibition alone was insufficient to induce hematopoietic chimerism, the addition of a Bcl-2 inhibitor resulted in promotion of hematopoietic chimerism and renal allograft tolerance despite using only half of the dose of total body irradiation previously required. Selective inhibition of Bcl-2 is therefore a promising approach to induce hematopoietic chimerism without myelosuppression and has the potential to render HSCT more feasible for a variety of clinical indications.


Subject(s)
Hematopoietic Stem Cell Transplantation , Kidney Transplantation , Animals , Chimerism , Primates , Transplantation Tolerance , Genes, bcl-2
6.
Sci Adv ; 8(49): eabq6527, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36475798

ABSTRACT

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolves to escape natural antibodies, it also loses sensitivity to therapeutic antibody drugs. By contrast, evolution selects for binding to ACE2, the cell-surface receptor required for SARS-CoV-2 infection. Consistent with this, we find that an ACE2 decoy neutralizes antibody-resistant variants, including Omicron, with no loss in potency. To identify design features necessary for in vivo activity, we compare several enzymatically inactive, Fc effector-silenced ACE2-Fc decoys. Inclusion of the ACE2 collectrin-like domain not only improves affinity for the S protein but also unexpectedly extends serum half-life and is necessary to reduce disease severity and viral titer in Syrian hamsters. Fc effector function is not required. The activity of ACE2 decoy receptors is due, in part, to their ability to trigger an irreversible structural change in the viral S protein. Our studies provide a new understanding of how ACE2 decoys function and support their development as therapeutics to treat ACE2-dependent coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans
7.
Cancer Cell ; 40(8): 879-894.e16, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35944503

ABSTRACT

Cellular deconvolution algorithms virtually reconstruct tissue composition by analyzing the gene expression of complex tissues. We present the decision tree machine learning algorithm, Kassandra, trained on a broad collection of >9,400 tissue and blood sorted cell RNA profiles incorporated into millions of artificial transcriptomes to accurately reconstruct the tumor microenvironment (TME). Bioinformatics correction for technical and biological variability, aberrant cancer cell expression inclusion, and accurate quantification and normalization of transcript expression increased Kassandra stability and robustness. Performance was validated on 4,000 H&E slides and 1,000 tissues by comparison with cytometric, immunohistochemical, or single-cell RNA-seq measurements. Kassandra accurately deconvolved TME elements, showing the role of these populations in tumor pathogenesis and other biological processes. Digital TME reconstruction revealed that the presence of PD-1-positive CD8+ T cells strongly correlated with immunotherapy response and increased the predictive potential of established biomarkers, indicating that Kassandra could potentially be utilized in future clinical applications.


Subject(s)
Neoplasms , Transcriptome , Algorithms , CD8-Positive T-Lymphocytes , Humans , Machine Learning , Neoplasms/genetics , RNA-Seq , Sequence Analysis, RNA , Tumor Microenvironment/genetics
8.
Front Immunol ; 13: 901372, 2022.
Article in English | MEDLINE | ID: mdl-35651616

ABSTRACT

T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Antibodies, Bacterial , Bacterial Vaccines , Disease Models, Animal , Epitopes, T-Lymphocyte , Guinea Pigs , Humans , Mice , Mice, Inbred C57BL , Peptides , Q Fever/prevention & control , T-Lymphocytes
9.
FASEB J ; 34(5): 6027-6037, 2020 05.
Article in English | MEDLINE | ID: mdl-32350928

ABSTRACT

There are currently no proven or approved treatments for coronavirus disease 2019 (COVID-19). Early anecdotal reports and limited in vitro data led to the significant uptake of hydroxychloroquine (HCQ), and to lesser extent chloroquine (CQ), for many patients with this disease. As an increasing number of patients with COVID-19 are treated with these agents and more evidence accumulates, there continues to be no high-quality clinical data showing a clear benefit of these agents for this disease. Moreover, these agents have the potential to cause harm, including a broad range of adverse events including serious cardiac side effects when combined with other agents. In addition, the known and potent immunomodulatory effects of these agents which support their use in the treatment of auto-immune conditions, and provided a component in the original rationale for their use in patients with COVID-19, may, in fact, undermine their utility in the context of the treatment of this respiratory viral infection. Specifically, the impact of HCQ on cytokine production and suppression of antigen presentation may have immunologic consequences that hamper innate and adaptive antiviral immune responses for patients with COVID-19. Similarly, the reported in vitro inhibition of viral proliferation is largely derived from the blockade of viral fusion that initiates infection rather than the direct inhibition of viral replication as seen with nucleoside/tide analogs in other viral infections. Given these facts and the growing uncertainty about these agents for the treatment of COVID-19, it is clear that at the very least thoughtful planning and data collection from randomized clinical trials are needed to understand what if any role these agents may have in this disease. In this article, we review the datasets that support or detract from the use of these agents for the treatment of COVID-19 and render a data informed opinion that they should only be used with caution and in the context of carefully thought out clinical trials, or on a case-by-case basis after rigorous consideration of the risks and benefits of this therapeutic approach.


Subject(s)
Coronavirus Infections/drug therapy , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , COVID-19 , Datasets as Topic/standards , Heart/drug effects , Humans , Hydroxychloroquine/pharmacology , Immunity, Innate/drug effects , Pandemics , Randomized Controlled Trials as Topic/standards
10.
Infect Immun ; 87(10)2019 10.
Article in English | MEDLINE | ID: mdl-31331958

ABSTRACT

Infection with Coxiella burnetii, the causative agent of Q fever, can result in life-threatening persistent infection. Reactogenicity hinders worldwide implementation of the only licensed human Q fever vaccine. We previously demonstrated long-lived immunoreactivity in individuals with past symptomatic and asymptomatic Coxiella infection (convalescents) to promiscuous HLA class II C. burnetii epitopes, providing the basis for a novel T-cell targeted subunit vaccine. In this study, we investigated in a cohort of 22 individuals treated for persistent infection (chronic Q fever) whether they recognize the same set of epitopes or distinct epitopes that could be candidates for a therapeutic vaccine or aid in the diagnosis of persistent infection. In cultured enzyme-linked immunosorbent spot (ELISpot) assays, individuals with chronic Q fever showed strong class II epitope-specific responses that were largely overlapping with the peptide repertoire identified previously for convalescents. Five additional peptides were recognized more frequently by chronic subjects, but there was no combination of epitopes uniquely recognized by or nonreactive in subjects with chronic Q fever. Consistent with more recent/prolonged exposure, we found, however, stronger ex vivo responses by direct ELISpot to both whole-cell C. burnetii and individual peptides in chronic patients than in convalescents. In conclusion, we have validated and expanded a previously published set of candidate epitopes for a novel T-cell targeted subunit Q fever vaccine in treated patients with chronic Q fever and demonstrated that they successfully mounted a T-cell response comparable to that of convalescents. Finally, we demonstrated that individuals treated for chronic Q fever mount a broader ex vivo response to class II epitopes than convalescents, which could be explored for diagnostic purposes.


Subject(s)
Antibodies, Bacterial/biosynthesis , Antigens, Bacterial/immunology , Coxiella burnetii/immunology , Epitopes, T-Lymphocyte/immunology , Q Fever/immunology , Aged , Anti-Bacterial Agents/therapeutic use , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Chronic Disease , Convalescence , Coxiella burnetii/pathogenicity , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Female , Gene Expression , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Histocompatibility Testing , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Male , Middle Aged , Peptides/genetics , Peptides/immunology , Q Fever/drug therapy , Q Fever/genetics , Q Fever/prevention & control , T-Lymphocytes/immunology , T-Lymphocytes/microbiology
11.
Front Immunol ; 10: 207, 2019.
Article in English | MEDLINE | ID: mdl-30828331

ABSTRACT

Coxiella burnetii, the causative agent of Q fever, is a Gram-negative intracellular bacterium transmitted via aerosol. Regulatory approval of the Australian whole-cell vaccine Q-VAX® in the US and Europe is hindered by reactogenicity in previously exposed individuals. The aim of this study was to identify and rationally select C. burnetii epitopes for design of a safe, effective, and less reactogenic T-cell targeted human Q fever vaccine. Immunoinformatic methods were used to predict 65 HLA class I epitopes and 50 promiscuous HLA class II C. burnetii epitope clusters, which are conserved across strains of C. burnetii. HLA binding assays confirmed 89% of class I and 75% of class II predictions, and 11 HLA class II epitopes elicited IFNγ responses following heterologous DNA/DNA/peptide/peptide prime-boost immunizations of HLA-DR3 transgenic mice. Human immune responses to the predicted epitopes were characterized in individuals naturally exposed to C. burnetii during the 2007-2010 Dutch Q fever outbreak. Subjects were divided into three groups: controls with no immunological evidence of previous infection and individuals with responses to heat-killed C. burnetii in a whole blood IFNγ release assay (IGRA) who remained asymptomatic or who experienced clinical Q fever during the outbreak. Recall responses to C. burnetii epitopes were assessed by cultured IFNγ ELISpot. While HLA class I epitope responses were sparse in this cohort, we identified 21 HLA class II epitopes that recalled T-cell IFNγ responses in 10-28% of IGRA+ subjects. IGRA+ individuals with past asymptomatic and symptomatic C. burnetii infection showed a comparable response pattern and cumulative peptide response which correlated with IGRA responses. None of the peptides elicited reactogenicity in a C. burnetii exposure-primed guinea pig model. These data demonstrate that a substantial proportion of immunoinformatically identified HLA class II epitopes show long-lived immunoreactivity in naturally infected individuals, making them desirable candidates for a novel human multi-epitope Q fever vaccine.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Coxiella burnetii/immunology , Epitopes, T-Lymphocyte/immunology , Immunologic Memory , Q Fever/immunology , Animals , Bacterial Vaccines/immunology , Biomarkers , CD4-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Enzyme-Linked Immunospot Assay , Guinea Pigs , HLA Antigens/immunology , HLA Antigens/metabolism , Humans , Immunization , Immunogenicity, Vaccine , Interferon-gamma/biosynthesis , Q Fever/metabolism , Q Fever/prevention & control
12.
FASEB J ; 33(5): 6596-6608, 2019 05.
Article in English | MEDLINE | ID: mdl-30802149

ABSTRACT

Blockade of immune-checkpoint programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 can enhance effector T-cell responses. However, the lack of response in many patients to checkpoint-inhibitor therapies emphasizes the need for combination immunotherapies to pursue maximal antitumor efficacy. We have previously demonstrated that antagonism of C-X-C chemokine receptor type 4 (CXCR4) by plerixafor (AMD3100) can decrease regulatory T (Treg)-cell intratumoral infiltration. Therefore, a combination of these 2 therapies might increase antitumor effects. Here, we evaluated the antitumor efficacy of AMD3100 and anti-PD-1 (αPD-1) antibody alone or in combination in an immunocompetent syngeneic mouse model of ovarian cancer. We found that AMD3100, a highly specific CXCR4 antagonist, directly down-regulated the expression of both C-X-C motif chemokine 12 (CXCL12) and CXCR4 in vitro and in vivo in tumor cells. AMD3100 and αPD-1 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice when given as monotherapy. Combination of these 2 agents significantly enhanced antitumor effects compared with single-agent administration. Benefits of tumor control and animal survival were associated with immunomodulation mediated by these 2 agents, which were characterized by increased effector T-cell infiltration, increased effector T-cell function, and increased memory T cells in tumor microenvironment. Intratumoral Treg cells were decreased, and conversion of Treg cells into T helper cells was increased by AMD3100 treatment. Intratumoral myeloid-derived suppressor cells were decreased by the combined treatment, which was associated with decreased IL-10 and IL-6 in the ascites. Also, the combination therapy decreased suppressive leukocytes and facilitated M2-to-M1 macrophage polarization in the tumor. These results suggest that AMD3100 could be used to target the CXCR4-CXCL12 axis to inhibit tumor growth and prevent multifaceted immunosuppression alone or in combination with αPD-1 in ovarian cancer, which could be clinically relevant to patients with this disease.-Zeng, Y., Li, B., Liang, Y., Reeves, P. M., Qu, X., Ran, C., Liu, Q., Callahan, M. V., Sluder, A. E., Gelfand, J. A., Chen, H., Poznansky, M. C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.


Subject(s)
B7-H1 Antigen , Chemokine CXCL12 , Heterocyclic Compounds/pharmacology , Immune Tolerance/drug effects , Neoplasm Proteins , Ovarian Neoplasms , Programmed Cell Death 1 Receptor , Receptors, CXCR4 , Signal Transduction , Tumor Microenvironment , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Benzylamines , Cell Line, Tumor , Chemokine CXCL12/antagonists & inhibitors , Chemokine CXCL12/immunology , Cyclams , Female , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/immunology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
14.
Cancer Immunol Res ; 6(5): 539-551, 2018 05.
Article in English | MEDLINE | ID: mdl-29511032

ABSTRACT

AMD3100 (plerixafor), a CXCR4 antagonist, has been demonstrated to suppress tumor growth and modulate intratumoral T-cell trafficking. However, the effect of AMD3100 on immunomodulation remains elusive. Here, we explored immunomodulation and antitumor efficacy of AMD3100 in combination with a previously developed mesothelin-targeted, immune-activating fusion protein, VIC-008, in two syngeneic, orthotopic models of malignant mesothelioma in immunocompetent mice. We showed that combination therapy significantly suppressed tumor growth and prolonged animal survival in two mouse models. Tumor control and survival benefit were associated with enhanced antitumor immunity. VIC-008 augmented mesothelin-specific CD8+ T-cell responses in the spleen and lymph nodes and facilitated intratumoral lymphocytic infiltration. However, VIC-008 treatment was associated with increased programmed cell death protein-1 (PD-1) expression on intratumoral CD8+ T cells, likely due to high CXCL12 in the tumor microenvironment. AMD3100 alone and in combination with VIC-008 modulated immunosuppression in tumors and the immune system through suppression of PD-1 expression on CD8+ T cells and conversion of regulatory T cells (Tregs) into CD4+CD25-Foxp3+IL2+CD40L+ helper-like cells. In mechanistic studies, we demonstrated that AMD3100-driven Treg reprogramming required T cell receptor (TCR) activation and was associated with loss of PTEN due to oxidative inactivation. The combination of VIC-008 augmentation of tumor-specific CD8+ T-cell responses with AMD3100 abrogation of immunosuppression conferred significant benefits for tumor control and animal survival. These data provide new mechanistic insight into AMD3100-mediated immunomodulation and highlight the enhanced antitumor effect of AMD3100 in combination with a tumor antigen-targeted therapy in mouse malignant mesothelioma, which could be clinically relevant to patients with this difficult-to-treat disease. Cancer Immunol Res; 6(5); 539-51. ©2018 AACR.


Subject(s)
Antigens, Bacterial/immunology , Cancer Vaccines/therapeutic use , GPI-Linked Proteins/immunology , HSP70 Heat-Shock Proteins/immunology , Heterocyclic Compounds/pharmacology , Immunomodulation/drug effects , Mesothelioma/therapy , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/therapeutic use , Benzylamines , CHO Cells , Cancer Vaccines/immunology , Cell Line, Tumor , Combined Modality Therapy , Cricetinae , Cricetulus , Cyclams , Drug Synergism , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/therapeutic use , Heterocyclic Compounds/administration & dosage , Mesothelin , Mesothelioma/immunology , Mesothelioma/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use
15.
FASEB J ; 32(1): 5-15, 2018 01.
Article in English | MEDLINE | ID: mdl-29092906

ABSTRACT

Mass cytometry enables highly multiplexed profiling of cellular immune responses in limited-volume samples, advancing prospects of a new era of systems immunology. The capabilities of mass cytometry offer expanded potential for deciphering immune responses to infectious diseases and to vaccines. Several studies have used mass cytometry to profile protective immune responses, both postinfection and postvaccination, although no vaccine-development program has yet systematically employed the technology from the outset to inform both candidate design and clinical evaluation. In this article, we review published mass cytometry studies relevant to vaccine development, briefly compare immune profiling by mass cytometry to other systems-level technologies, and discuss some general considerations for deploying mass cytometry in the context of vaccine development.-Reeves, P. M., Sluder, A. E., Raju Paul, S., Scholzen, A., Kashiwagi, S., Poznansky, M. C. Application and utility of mass cytometry in vaccine development.


Subject(s)
Flow Cytometry/methods , Vaccines/immunology , Animals , Antibodies , Data Interpretation, Statistical , Drug Discovery , Flow Cytometry/statistics & numerical data , Fluorescent Dyes , Gene Expression Profiling , Humans , Immunity, Cellular , Influenza Vaccines/immunology , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Systems Biology
16.
Oncotarget ; 8(55): 94040-94053, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29212208

ABSTRACT

Background: Chemotherapy initially reduces the tumor burden in patients with ovarian cancer. However, tumors recur in over 70% of patients, creating the need for novel therapeutic approaches. Methods: We evaluated Ruxolitinib, an FDA-approved JAK 1/2 kinase inhibitor, as a potential adjunctive therapy for use with low-dose Taxol (Paclitaxel) by assessing the impact on in vitro proliferation and colony formation of ID8 cells or human TOV-112D ovarian cancer cells, as well as flow cytometric measurement of surface markers associated with cellular stress and stemness by ID8 cells. The syngeneic ID8 murine model of ovarian cancer was used to assess the impact of Ruxolitinib and Taxol, individually and in combination, on tumor initiation and growth, as well as capacity to extend survival. Results: Ruxolitinib (≤10 µM) sensitized both ID8 and TOV-112D cells to low concentrations of Taxol (≤5 nM), limiting cell proliferation and colony formation in vitro. Mechanistically, we demonstrated that Taxol induced expression of stress and stemness markers including GRP78 and CD133 was significantly reduced by addition of Ruxolitinib. Finally, we demonstrated that a single administration of a low-dose of Taxol (10 mg/Kg) together with daily Ruxolitinib (30 mg/Kg; which is equivalent to plasma concentrations of ∼ 0.01 µM steady-state) limited ID8 tumor growth in vivo and significantly extended median survival up to 53.5% (median 70 v 107.5 days) as compared to control mice. Conclusion: Together, these data support the use of Ruxolitinib in combination with low-dose Taxol as a therapeutic approach with the potential for improved efficacy and reduced side effects for patients with recurrent ovarian cancer.

17.
Hum Vaccin Immunother ; 13(12): 2977-2981, 2017 12 02.
Article in English | MEDLINE | ID: mdl-28933682

ABSTRACT

Development of vaccines that are both safe and effective remains a costly and time-consuming challenge. To accelerate the pace of development and improve the efficacy and safety of candidate vaccines for both existing and emerging infectious agents, we have used a distributed development approach. This features the managed integration of individual expert groups having the requisite vaccine platforms, pre-clinical models, assays, skills and knowledge pertinent to a specific pathogen into a single, end-to-end development team capable of producing a new vaccine tailored to that particular agent. Distributed development focuses on integrating existing effort across multiple institutions rather than developing new capabilities or consolidating resources within an individual organization. Previously we have used the distributed development strategy to generate vaccine candidates for emerging viral diseases. Coxiella burnetii is a highly infectious and resilient bacterium and the causative agent of Q fever. Treatment for Q fever can require months of antibiotics. The current vaccine for Q-fever is only approved in Australia and requires prescreening due to the potential for severe reactogenicity in previously exposed individuals. Here we discuss Q-VaxCelerate, a distributed development consortium for the development of a new vaccine to prevent Q fever.


Subject(s)
Bacterial Vaccines/immunology , Bacterial Vaccines/isolation & purification , Coxiella burnetii/immunology , Drug Discovery/organization & administration , Q Fever/prevention & control , Humans
18.
Anticancer Drugs ; 28(9): 935-942, 2017 10.
Article in English | MEDLINE | ID: mdl-28817386

ABSTRACT

The standard of care for ovarian cancer includes initial treatment with chemotherapy. Despite initial efficacy, over 70% of patients develop recurrence; thus, there is a need to identify novel approaches that can improve therapeutic outcomes. We evaluated AMD3100 (Plerixafor), an FDA-approved CXCR4 inhibitor, as a potential adjunctive therapy for low-dose Taxol (Paclitaxel) by assessing the impact on in-vitro ovarian cancer cell proliferation. Proliferation was a measure for both human TOV-112D and murine ID8 ovarian cancer cells incubated with AMD3100 and Taxol, either individually or in combination. Impact of treatment was first determined for the simultaneous administration of AMD3100 and Taxol. We next assessed a sequential application of AMD3100 pretreatment, followed by AMD3100, Taxol, or a combination to test for sensitization to Taxol. In addition, we measured the impact of AMD3100 and Taxol, individually and in combination, on colony formation, an in-vitro model assay of tumor growth. Expression data, as measured by flow cytometry, show that both ID8 and TOV-112D cells are positive for CXCR4, CXCR7, and CXCL12. Combination treatment with AMD3100 (≤10 µmol/l) sensitized both ID8 and TOV-112D cells to low concentrations of Taxol (≤5 nmol/l), limiting cell proliferation and colony formation in vitro. Pretreatment with AMD3100 significantly increased the sensitivity of human ovarian cancer to low-dose Taxol or the combination of AMD3100 and Taxol, although this effect was not evident in murine cells. Importantly, for both human and murine cells, incubation with a combination of AMD3100 and Taxol had the largest impact on limiting cell proliferation. AMD3100 in combination with low-dose Taxol offers improved efficacy and the potential of reduced toxicity for the treatment of ovarian cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Heterocyclic Compounds/pharmacology , Ovarian Neoplasms/drug therapy , Paclitaxel/pharmacology , Receptors, CXCR4/antagonists & inhibitors , Animals , Benzylamines , Cell Growth Processes/drug effects , Cell Line, Tumor , Cyclams , Dose-Response Relationship, Drug , Drug Synergism , Female , Heterocyclic Compounds/administration & dosage , Humans , Mice , Ovarian Neoplasms/pathology , Paclitaxel/administration & dosage
19.
Traffic ; 17(1): 40-52, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26481905

ABSTRACT

The sphingosine 1-phosphate receptor 1 (S1PR1) is one of five G protein-coupled receptors activated by the lipid sphingosine 1-phosphate (S1P). Stimulation of S1PR1 by binding S1P or the synthetic agonist FTY720P results in rapid desensitization, associated in part with depletion of receptor from the cell surface. We report here combining spinning disc confocal fluorescence microscopy and flow cytometry to show that rapid internalization of activated S1PR1 relies on a functional clathrin-mediated endocytic pathway. Uptake of activated S1PR1 was strongly inhibited in cells disrupted in their clathrin-mediated endocytosis by depleting clathrin or AP-2 or by treating cells with dynasore-OH. The uptake of activated S1P1R was strongly inhibited in cells lacking both ß-arrestin 1 and ß-arrestin 2, indicating that activated S1PR1 follows the canonical route of endocytosis for G-protein coupled receptor's (GPCR)'s.


Subject(s)
Clathrin/metabolism , Endocytosis , Receptors, Lysosphingolipid/metabolism , Animals , Arrestins/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice , Organophosphates/pharmacology , Receptors, Lysosphingolipid/agonists , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Sphingosine-1-Phosphate Receptors , beta-Arrestin 1 , beta-Arrestin 2 , beta-Arrestins
20.
J Cell Sci ; 127(Pt 18): 3970-82, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25074807

ABSTRACT

After activation by Wnt/ß-Catenin ligands, a multi-protein complex assembles at the plasma membrane as membrane-bound receptors and intracellular signal transducers are clustered into the so-called Lrp6-signalosome [Corrected]. However, the mechanism of signalosome formation and dissolution is yet not clear. Our imaging studies of live zebrafish embryos show that the signalosome is a highly dynamic structure. It is continuously assembled by Dvl2-mediated recruitment of the transducer complex to the activated receptors and partially disassembled by endocytosis. We find that, after internalization, the ligand-receptor complex and the transducer complex take separate routes. The Wnt-Fz-Lrp6 complex follows a Rab-positive endocytic path. However, when still bound to the transducer complex, Dvl2 forms intracellular aggregates. We show that this endocytic process is not only essential for ligand-receptor internalization but also for signaling. The µ2-subunit of the endocytic Clathrin adaptor Ap2 interacts with Dvl2 to maintain its stability during endocytosis. Blockage of Ap2µ2 function leads to Dvl2 degradation, inhibiton of signalosome formation at the plasma membrane and, consequently, reduction of signaling. We conclude that Ap2µ2-mediated endocytosis is important to maintain Wnt/ß-catenin signaling in vertebrates.


Subject(s)
Endocytosis , Multiprotein Complexes/metabolism , Wnt Signaling Pathway , Xenopus/metabolism , beta Catenin/metabolism , Adaptor Protein Complex 2/genetics , Adaptor Protein Complex 2/metabolism , Adaptor Protein Complex mu Subunits/genetics , Adaptor Protein Complex mu Subunits/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Dishevelled Proteins , Female , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Multiprotein Complexes/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Xenopus/embryology , Xenopus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...