Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Biol ; 34(13): 2957-2971.e8, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917798

ABSTRACT

The root endophytic fungus Serendipita indica establishes beneficial symbioses with a broad spectrum of plants and enhances host resilience against biotic and abiotic stresses. However, little is known about the mechanisms underlying S. indica-mediated plant protection. Here, we report S. indica effector (SIE) 141 and its host target CDSP32, a conserved thioredoxin-like protein, and underlying mechanisms for enhancing pathogen resistance and abiotic salt tolerance in Arabidopsis thaliana. SIE141 binding interfered with canonical targeting of CDSP32 to chloroplasts, leading to its re-location into the plant nucleus. This nuclear translocation is essential for both their interaction and resistance function. Furthermore, SIE141 enhanced oxidoreductase activity of CDSP32, leading to CDSP32-mediated monomerization and activation of NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 (NPR1), a key regulator of systemic resistance. Our findings provide functional insights on how S. indica transfers well-known beneficial effects to host plants and indicate CDSP32 as a genetic resource to improve plant resilience to abiotic and biotic stresses.


Subject(s)
Arabidopsis , Salt Stress , Symbiosis , Arabidopsis/microbiology , Arabidopsis/physiology , Arabidopsis/genetics , Basidiomycota/physiology , Oxidoreductases/metabolism , Oxidoreductases/genetics , Cell Nucleus/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Plastids/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology
2.
Bioessays ; 46(4): e2300172, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38388783

ABSTRACT

There is an urgent need for novel protection strategies to sustainably secure crop production under changing climates. Studying microbial effectors, defined as microbe-derived proteins that alter signalling inside plant cells, has advanced our understanding of plant immunity and microbial plant colonisation strategies. Our understanding of effectors in the establishment and beneficial outcome of plant symbioses is less well known. Combining functional and comparative interaction assays uncovered specific symbiont effector targets in highly interconnected plant signalling networks and revealed the potential of effectors in beneficially modulating plant traits. The diverse functionality of symbiont effectors differs from the paradigmatic immuno-suppressive function of pathogen effectors. These effectors provide solutions for improving crop resilience against climate stress by their evolution-driven specification in host protein targeting and modulation. Symbiont effectors represent stringent tools not only to identify genetic targets for crop breeding, but to serve as applicable agents in crop management strategies under changing environments.


Subject(s)
Plant Proteins , Resilience, Psychological , Plant Proteins/metabolism , Plant Breeding , Plants/metabolism , Symbiosis
3.
Nat Commun ; 14(1): 4065, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429856

ABSTRACT

Plants have benefited from interactions with symbionts for coping with challenging environments since the colonisation of land. The mechanisms of symbiont-mediated beneficial effects and similarities and differences to pathogen strategies are mostly unknown. Here, we use 106 (effector-) proteins, secreted by the symbiont Serendipita indica (Si) to modulate host physiology, to map interactions with Arabidopsis thaliana host proteins. Using integrative network analysis, we show significant convergence on target-proteins shared with pathogens and exclusive targeting of Arabidopsis proteins in the phytohormone signalling network. Functional in planta screening and phenotyping of Si effectors and interacting proteins reveals previously unknown hormone functions of Arabidopsis proteins and direct beneficial activities mediated by effectors in Arabidopsis. Thus, symbionts and pathogens target a shared molecular microbe-host interface. At the same time Si effectors specifically target the plant hormone network and constitute a powerful resource for elucidating the signalling network function and boosting plant productivity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Growth Regulators , Signal Transduction , Arabidopsis Proteins/genetics , Hormones
SELECTION OF CITATIONS
SEARCH DETAIL