Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 25(5): 1091-1102.e4, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28467927

ABSTRACT

Central regulation of metabolic physiology is mediated critically through neuronal functions; however, whether astrocytes are also essential remains unclear. Here we show that the high-order processes of astrocytes in the mediobasal hypothalamus displayed shortening in fasting and elongation in fed status. Chronic overnutrition and astrocytic IKKß/NF-κB upregulation similarly impaired astrocytic plasticity, leading to sustained shortening of high-order processes. In physiology, astrocytic IKKß/NF-κB upregulation resulted in early-onset effects, including glucose intolerance and blood pressure rise, and late-onset effects, including body weight and fat gain. Appropriate inhibition in astrocytic IKKß/NF-κB protected against chronic overnutrition impairing astrocytic plasticity and these physiological functions. Mechanistically, astrocytic regulation of hypothalamic extracellular GABA level and therefore BDNF expression were found partly accountable. Hence, astrocytic process plasticity and IKKß/NF-κB play significant roles in central control of blood glucose, blood pressure, and body weight as well as the central induction of these physiological disorders leading to disease.


Subject(s)
Astrocytes/metabolism , Blood Glucose/metabolism , Blood Pressure , Hypothalamus/physiology , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Animals , Astrocytes/pathology , Body Weight , Cells, Cultured , Fasting , Glucose Intolerance/metabolism , Glucose Intolerance/physiopathology , HEK293 Cells , Humans , Hypothalamus/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/physiopathology
2.
J Psychiatr Res ; 76: 74-83, 2016 May.
Article in English | MEDLINE | ID: mdl-26897419

ABSTRACT

Despite intense research efforts the molecular mechanisms affecting stress-vulnerable brain regions in posttraumatic stress disorder (PTSD) remain elusive. In the current study we have applied global transcriptomic profiling to a PTSD mouse model induced by foot shock fear conditioning. We compared the transcriptomes of prelimbic cortex, anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of amygdala, nucleus accumbens (NAc) and CA1 of the dorsal hippocampus between shocked and non-shocked (control) mice, with and without fluoxetine treatment by RNA sequencing. Differentially expressed (DE) genes were identified and clustered for in silico pathway analysis. Findings in relevant brain regions were further validated with immunohistochemistry. DE genes belonging to 11 clusters were identified including increased inflammatory response in ACC in shocked mice. In line with this finding, we noted higher microglial activation in ACC of shocked mice. Chronic fluoxetine treatment initiated in the aftermath of the trauma prevented inflammatory gene expression alterations in ACC and ameliorated PTSD-like symptoms, implying an important role of the immune response in PTSD pathobiology. Our results provide novel insights into molecular mechanisms affected in PTSD and suggest therapeutic applications with anti-inflammatory agents.


Subject(s)
Antidepressive Agents, Second-Generation/therapeutic use , Fluoxetine/therapeutic use , Gene Expression Regulation/drug effects , Inflammation/etiology , Inflammation/prevention & control , Stress Disorders, Post-Traumatic/complications , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Electroshock/adverse effects , Fear/psychology , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , RNA, Messenger/metabolism , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/etiology , Stress Disorders, Post-Traumatic/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
3.
J Psychiatr Res ; 68: 261-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26228428

ABSTRACT

Although mental disorders as major depression are highly prevalent worldwide their underlying causes remain elusive. Despite the high heritability of depression and a clear genetic contribution to the disease, the identification of genetic risk factors for depression has been very difficult. The first published candidate to reach genome-wide significance in depression was SLC6A15, a neuronal amino acid transporter. With a reported 1,42 fold increased risk of suffering from depression associated with a single nucleotide polymorphism (SNP) in a regulatory region of SLC6A15, the polymorphism was also found to affect hippocampal morphology, integrity, and hippocampus-dependent memory. However, the function of SLC6A15 in the brain is so far largely unknown. To address this question, we investigated if alterations in SLC6A15 expression, either using a full knockout or a targeted hippocampal overexpression, affect hippocampal neurochemistry and consequently behavior. We could show that a lack of SLC6A15 reduced hippocampal tissue levels of proline and other neutral amino acids. In parallel, we observed a decreased overall availability of tissue glutamate and glutamine, while at the same time the basal tone of extracellular glutamate in the hippocampus was increased. By contrast, SLC6A15 overexpression increased glutamate/glutamine tissue concentrations. These neurochemical alterations could be linked to behavioral abnormalities in sensorimotor gating, a key translational endophenotype relevant for many psychiatric disorders. Overall, our data supports SLC6A15 as a crucial factor controlling amino acid content in the hippocampus, thereby likely interfering with glutamatergic transmission and behavior. These findings emphasize SLC6A15 as pivotal risk factor for vulnerability to psychiatric diseases.


Subject(s)
Amino Acid Transport Systems, Neutral/physiology , Behavior, Animal/physiology , Glutamic Acid/metabolism , Hippocampus/metabolism , Sensory Gating/physiology , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Animals , Hippocampus/anatomy & histology , Hippocampus/chemistry , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proline/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction
4.
Front Behav Neurosci ; 8: 452, 2014.
Article in English | MEDLINE | ID: mdl-25628548

ABSTRACT

GABAergic interneurons are essential for a functional equilibrium between excitatory and inhibitory impulses throughout the CNS. Disruption of this equilibrium can lead to various neurological or neuropsychiatric disorders such as epilepsy or schizophrenia. Schizophrenia itself is clinically defined by negative (e.g., depression) and positive (e.g., hallucinations) symptoms as well as cognitive dysfunction. GABAergic interneurons are proposed to play a central role in the etiology and progression of schizophrenia; however, the specific mechanisms and the time-line of symptom development as well as the distinct involvement of cortical and hippocampal GABAergic interneurons in the etiology of schizophrenia-related symptoms are still not conclusively resolved. Previous work demonstrated that GABAergic interneurons can be selectively depleted in adult mice by means of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro and in vivo. Given their involvement in schizophrenia-related disease etiology, we ablated GABAergic interneurons in the medial prefrontal cortex (mPFC) and dorsal hippocampus (dHPC) in adult male C57BL/6N mice. Subsequently we assessed alterations in anxiety, sensory processing, hyperactivity and cognition after long-term (>14 days) and short-term (<14 days) GABAergic depletion. Long-term GABAergic depletion in the mPFC resulted in a decrease in sensorimotor-gating and impairments in cognitive flexibility. Notably, the same treatment at the level of the dHPC completely abolished spatial learning capabilities. Short-term GABAergic depletion in the dHPC revealed a transient hyperactive phenotype as well as marked impairments regarding the acquisition of a spatial memory. In contrast, recall of a spatial memory was not affected by the same intervention. These findings emphasize the importance of functional local GABAergic networks for the encoding but not the recall of hippocampus-dependent spatial memories.

SELECTION OF CITATIONS
SEARCH DETAIL
...