Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39356193

ABSTRACT

The Particle Time of Flight (PTOF) detector is a chemical vapor deposition diamond-based detector used to measure bang times in low-yield (≲ 1015 neutrons) experiments at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Historically, the impulse response for PTOF diamond detectors has been obtained from x-ray timing shots on the NIF and shots on the MegaRay pulsed electron accelerator at LLNL. The impulse response may alternatively be obtained using single particle interactions with the detector, at substantially less cost and higher frequency compared to NIF timing shots, which typically occur months apart. Here, the response of a PTOF detector setup is characterized by statistically averaging a large number of single particle waveforms. A high fidelity instrument response function can be constructed in this way. This is confirmed by comparison of the single particle counting-constructed response to the impulse response function measured for the same detector at LLNL's MegaRay facility.

2.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39365111

ABSTRACT

To benchmark the accuracy of the models and improve the predictive capability of future experiments, the National Ignition Facility requires measurements of the physical conditions inside inertial confinement fusion hohlraums. The ion temperature and bulk motion velocity of the gas-filled regions of the hohlraum can be obtained by replacing the helium tamping gas in the hohlraum with deuterium-tritium (DT) gas and measuring the Doppler broadening and Doppler shift of the neutron spectrum produced by nuclear reactions in the hohlraum. To understand the spatial distribution of the neutron production inside the hohlraum, we have developed a new penumbral neutron imager with a 12 mm diameter field of view using a simple tungsten alloy spindle. We performed the first experiment using this imager on a DT gas-filled hohlraum and successfully obtained the spatial distribution of neutron production in the hohlraum plasma. We will report on the design of the spindle, characterization of the detectors, and methodology of the image reconstruction.

3.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39302171

ABSTRACT

Radiochromic film (RCF) and image plates (IPs) are both commonly used detectors in diagnostics fielded at inertial confinement fusion (ICF) and high-energy-density physics (HEDP) research facilities. Due to the intense x-ray background in all ICF/HEDP experiments, accurately calibrating the optical density of RCF as a function of x-ray dose, and the photostimulated luminescence per photon of IPs as a function of x-ray energy, is necessary for interpreting experimental results. Various measurements of the sensitivity curve of different IPs to x rays have been performed [Izumi et al., Proc. SPIE 8850, 885006 (2013) and Rosenberg et al., Rev. Sci. Instrum. 90(1), 013506 (2019)]; however, calibrating RCF is a tedious process that depends on factors such as the orientation in which the RCF is scanned in the film scanner and the batch of RCF used. These issues can be mitigated by cross-calibrating RCF with IPs to enable the use of IPs for the determination of dose on the RCF without scanning the RCF. Here, the first cross-calibration of RCF with IPs to quasi-monoenergetic titanium, copper, and molybdenum K-line x rays is presented. It is found that the IP-inferred dose rates on the RCF for the Ti and Mo x rays agree well with the measured dose rates, while the IP-inferred dose rate for the Cu x rays is larger than the measured dose rate by ∼2×. Explanations for this discrepancy and plans for future work are discussed.

4.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39315911

ABSTRACT

Image plates (IPs), or phosphor storage screens, are a technology employed frequently in inertial confinement fusion (ICF) and high energy density plasma (HEDP) diagnostics because of their sensitivity to many types of radiation, including, x rays, protons, alphas, beta particles, and neutrons. Prior studies characterizing IPs are predicated on the signal level remaining below the scanner saturation threshold. Since the scanning process removes some signal from the IP via photostimulated luminescence, repeatedly scanning an IP can bring the signal level below the scanner saturation threshold. This process, in turn, raises concerns about the signal response of IPs after an arbitrary number of scans and whether such a process yields, for example, a constant ratio of signal between the nth and n + 1st scan. Here, the sensitivity of IPs is investigated when scanned multiple times. It is demonstrated that the ratio of signal decay is not a constant with the number of scans and that the signal decay depends on the x-ray energy. As such, repeatedly scanning an IP with a mixture of signal types (e.g., x ray, neutron, and protons) enables ICF and HEDP diagnostics employing IPs to better isolate a particular signal type.

5.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39315912

ABSTRACT

Image plates (IPs) are a quickly recoverable and reusable radiation detector often used to measure proton and x-ray fluence in laser-driven experiments. Recently, IPs have been used in a proton radiography detector stack on the OMEGA laser, a diagnostic historically implemented with CR-39, or radiochromic film. The IPs used in this and other diagnostics detect charged particles, neutrons, and x-rays indiscriminately. IPs detect radiation using a photo-stimulated luminescence (PSL) material, often phosphor, in which electrons are excited to metastable states by ionizing radiation. Protons at MeV energies deposit energy deeper into the IP compared with x rays below ∼20 keV due to the Bragg peak present for protons. This property is exploited to discriminate between radiation types. Doses of mono-energetic protons between 1.7 and 14 MeV are applied to IPs using the MIT linear electrostatic ion accelerator. This paper presents the results from consecutive scans of IPs irradiated with different proton energies. The PSL ratios between subsequent scans are shown to depend on proton energy, with higher energy protons having lower PSL ratios for each scan. This finding is separate from the known energy dependence in the absolute sensitivity of IPs. The results can be compared to complimentary work on x rays, showing a difference between protons and x rays, forging a path to discriminate between proton and x-ray fluence in mixed radiation environments.

6.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38912911

ABSTRACT

Penumbral imaging is a technique used in plasma diagnostics in which a radiation source shines through one or more large apertures onto a detector. To interpret a penumbral image, one must reconstruct it to recover the original source. The inferred source always has some error due to noise in the image and uncertainty in the instrument geometry. Interpreting the inferred source thus requires quantification of that inference's uncertainty. Markov chain Monte Carlo algorithms have been used to quantify uncertainty for similar problems but have never been used for the inference of the shape of an image. Because of this, there are no commonly accepted ways of visualizing uncertainty in two-dimensional data. This paper demonstrates the application of the Hamiltonian Monte Carlo algorithm to the reconstruction of penumbral images of fusion implosions and presents ways to visualize the uncertainty in the reconstructed source. This methodology enables more rigorous analysis of penumbral images than has been done in the past.

7.
Phys Rev Lett ; 132(3): 035101, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38307081

ABSTRACT

Magnetic reconnection is a ubiquitous and fundamental process in plasmas by which magnetic fields change their topology and release magnetic energy. Despite decades of research, the physics governing the reconnection process in many parameter regimes remains controversial. Contemporary reconnection theories predict that long, narrow current sheets are susceptible to the tearing instability and split into isolated magnetic islands (or plasmoids), resulting in an enhanced reconnection rate. While several experimental observations of plasmoids in the regime of low-to-intermediate ß (where ß is the ratio of plasma thermal pressure to magnetic pressure) have been made, there is a relative lack of experimental evidence for plasmoids in the high-ß reconnection environments which are typical in many space and astrophysical contexts. Here, we report strong experimental evidence for plasmoid formation in laser-driven high-ß reconnection experiments.

8.
Rev Sci Instrum ; 92(8): 083506, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34470381

ABSTRACT

New designs and a new analysis technique have been developed for an existing compact charged-particle spectrometer on the NIF and OMEGA. The new analysis technique extends the capabilities of this diagnostic to measure arbitrarily shaped ion spectra down to 1 MeV with yields as low as 106. Three different designs are provided optimized for the measurement of DD protons, T3He deuterons, and 3He3He protons. The designs are highly customizable, and a generalized framework is provided for optimizing the design for alternative applications. Additionally, the understanding of the detector's response and uncertainties is greatly expanded upon. A new calibration procedure is also developed to increase the precision of the measurements.

SELECTION OF CITATIONS
SEARCH DETAIL