Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
CBE Life Sci Educ ; 17(2): ar20, 2018 06.
Article in English | MEDLINE | ID: mdl-29749845

ABSTRACT

Course-based undergraduate research experiences (CUREs) provide a promising avenue to attract a larger and more diverse group of students into research careers. CUREs are thought to be distinctive in offering students opportunities to make discoveries, collaborate, engage in iterative work, and develop a sense of ownership of their lab course work. Yet how these elements affect students' intentions to pursue research-related careers remain unexplored. To address this knowledge gap, we collected data on three design features thought to be distinctive of CUREs (discovery, iteration, collaboration) and on students' levels of ownership and career intentions from ∼800 undergraduates who had completed CURE or inquiry courses, including courses from the Freshman Research Initiative (FRI), which has a demonstrated positive effect on student retention in college and in science, technology, engineering, and mathematics. We used structural equation modeling to test relationships among the design features and student ownership and career intentions. We found that discovery, iteration, and collaboration had small but significant effects on students' intentions; these effects were fully mediated by student ownership. Students in FRI courses reported significantly higher levels of discovery, iteration, and ownership than students in other CUREs. FRI research courses alone had a significant effect on students' career intentions.


Subject(s)
Cooperative Behavior , Laboratories , Ownership , Research/education , Students , Curriculum , Female , Humans , Male
2.
J Exp Bot ; 60(7): 2129-38, 2009.
Article in English | MEDLINE | ID: mdl-19363208

ABSTRACT

Plant and animal cells release or secrete ATP by various mechanisms, and this activity allows extracellular ATP to serve as a signalling molecule. Recent reports suggest that extracellular ATP induces plant responses ranging from increased cytosolic calcium to changes in auxin transport, xenobiotic resistance, pollen germination, and growth. Although calcium has been identified as a secondary messenger for the extracellular ATP signal, other parts of this signal transduction chain remain unknown. Increasing the extracellular concentration of ATPgammaS, a poorly-hydrolysable ATP analogue, inhibited both pollen germination and pollen tube elongation, while the addition of AMPS had no effect. Because pollen tube elongation is also sensitive to nitric oxide, this raised the possibility that a connection exists between the two pathways. Four approaches were used to test whether the germination and growth effects of extracellular ATPgammaS were transduced via nitric oxide. The results showed that increases in extracellular ATPgammaS induced increases in cellular nitric oxide, chemical agonists of the nitric oxide signalling pathway lowered the threshold of extracellular ATPgammaS that inhibits pollen germination, an antagonist of guanylate cyclase, which can inhibit some nitric oxide signalling pathways, blocked the ATPgammaS-induced inhibition of both pollen germination and pollen tube elongation, and the effects of applied ATPgammaS were blocked in nia1nia2 mutants, which have diminished NO production. The concurrence of these four data sets support the conclusion that the suppression of pollen germination and pollen tube elongation by extracellular nucleotides is mediated in part via the nitric oxide signalling pathway.


Subject(s)
Adenosine Triphosphate/metabolism , Arabidopsis/metabolism , Germination , Nitric Oxide/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Signal Transduction , Arabidopsis/growth & development
3.
Plant Physiol ; 144(2): 961-75, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17434987

ABSTRACT

Expression of two Arabidopsis (Arabidopsis thaliana) apyrase (nucleoside triphosphate-diphosphohydrolase) genes with high similarity, APY1 and APY2, was analyzed during seedling development and under different light treatments using beta-glucuronidase fusion constructs with the promoters of both genes. As evaluated by beta-glucuronidase staining and independently confirmed by other methods, the highest expression of both apyrases was in rapidly growing tissues and/or tissues that accumulate high auxin levels. Red-light treatment of etiolated seedlings suppressed the protein and message level of both apyrases at least as rapidly as it inhibited hypocotyl growth. Adult apy1 and apy2 single mutants had near-normal growth, but apy1apy2 double-knockout plants were dwarf, due primarily to reduced cell elongation. Pollen tubes and etiolated hypocotyls overexpressing an apyrase had faster growth rates than wild-type plants. Growing pollen tubes released ATP into the growth medium and suppression of apyrase activity by antiapyrase antibodies or by inhibitors simultaneously increased medium ATP levels and inhibited pollen tube growth. These results imply that APY1 and APY2, like their homologs in animals, act to reduce the concentration of extracellular nucleotides, and that this function is important for the regulation of growth in Arabidopsis.


Subject(s)
Apyrase/metabolism , Arabidopsis/enzymology , Cell Growth Processes/physiology , Hypocotyl/metabolism , Pollen Tube/metabolism , Adenosine Triphosphate/metabolism , Antibodies , Apyrase/immunology , Arabidopsis/growth & development , Down-Regulation , Extracellular Space/metabolism , Gene Expression , Hypocotyl/growth & development , Light , Plant Roots/growth & development , Plant Roots/metabolism , Pollen Tube/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL