Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Article in English | MEDLINE | ID: mdl-39009381

ABSTRACT

BACKGROUND: There is increasing evidence that myosteatosis, which is currently not assessed in clinical routine, plays an important role in risk estimation in individuals with impaired glucose metabolism, as it is associated with the progression of insulin resistance. With advances in artificial intelligence, automated and accurate algorithms have become feasible to fill this gap. METHODS: In this retrospective study, we developed and tested a fully automated deep learning model using data from two prospective cohort studies (German National Cohort [NAKO] and Cooperative Health Research in the Region of Augsburg [KORA]) to quantify myosteatosis on whole-body T1-weighted Dixon magnetic resonance imaging as (1) intramuscular adipose tissue (IMAT; the current standard) and (2) quantitative skeletal muscle (SM) fat fraction (SMFF). Subsequently, we investigated the two measures for their discrimination of and association with impaired glucose metabolism beyond baseline demographics (age, sex and body mass index [BMI]) and cardiometabolic risk factors (lipid panel, systolic blood pressure, smoking status and alcohol consumption) in asymptomatic individuals from the KORA study. Impaired glucose metabolism was defined as impaired fasting glucose or impaired glucose tolerance (140-200 mg/dL) or prevalent diabetes mellitus. RESULTS: Model performance was high, with Dice coefficients of ≥0.81 for IMAT and ≥0.91 for SM in the internal (NAKO) and external (KORA) testing sets. In the target population (380 KORA participants: mean age of 53.6 ± 9.2 years, BMI of 28.2 ± 4.9 kg/m2, 57.4% male), individuals with impaired glucose metabolism (n = 146; 38.4%) were older and more likely men and showed a higher cardiometabolic risk profile, higher IMAT (4.5 ± 2.2% vs. 3.9 ± 1.7%) and higher SMFF (22.0 ± 4.7% vs. 18.9 ± 3.9%) compared to normoglycaemic controls (all P ≤ 0.005). SMFF showed better discrimination for impaired glucose metabolism than IMAT (area under the receiver operating characteristic curve [AUC] 0.693 vs. 0.582, 95% confidence interval [CI] [0.06-0.16]; P < 0.001) but was not significantly different from BMI (AUC 0.733 vs. 0.693, 95% CI [-0.09 to 0.01]; P = 0.15). In univariable logistic regression, IMAT (odds ratio [OR] = 1.18, 95% CI [1.06-1.32]; P = 0.004) and SMFF (OR = 1.19, 95% CI [1.13-1.26]; P < 0.001) were associated with a higher risk of impaired glucose metabolism. This signal remained robust after multivariable adjustment for baseline demographics and cardiometabolic risk factors for SMFF (OR = 1.10, 95% CI [1.01-1.19]; P = 0.028) but not for IMAT (OR = 1.14, 95% CI [0.97-1.33]; P = 0.11). CONCLUSIONS: Quantitative SMFF, but not IMAT, is an independent predictor of impaired glucose metabolism, and discrimination is not significantly different from BMI, making it a promising alternative for the currently established approach. Automated methods such as the proposed model may provide a feasible option for opportunistic screening of myosteatosis and, thus, a low-cost personalized risk assessment solution.

2.
Brain Struct Funct ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012483

ABSTRACT

The arcuate fasciculus may be subdivided into a tract directly connecting frontal and temporal lobes and a pair of indirect subtracts in which the fronto-temporal connection is mediated by connections to the inferior parietal lobe. This tripartition has been advanced as an improvement over the centuries-old consensus that the lateral dorsal association fibers form a continuous system with no discernible discrete parts. Moreover, it has been used as the anatomical basis for functional hypotheses regarding linguistic abilities. Ex hypothesi, damage to the indirect subtracts leads to deficits in the repetition of multi-word sequences, whereas damage to the direct subtract leads to deficits in the immediate reproduction of single multisyllabic words. We argue that this partitioning of the dorsal association tract system enjoys no special anatomical status, and the search for the anatomical substrates of linguistic abilities should not be constrained by it. Instead, the merit of any postulated partitioning should primarily be judged on the basis of whether it enlightens or obfuscates our understanding of the behavior of patients in which individual subtracts are damaged.

3.
Eur J Radiol ; 177: 111595, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38970994

ABSTRACT

PURPOSE: CT perfusion (CTP) is a valuable tool in suspected acute ischemic stroke. A substantial variability of the delay between contrast injection and bolus arrival in the brain is conceivable. We investigated the distribution of the peak positions of the concentration time curves measured in an artery (arterial input function, AIF) and - in cases with ischemia - also measured in the penumbra. METHODS: We report on 2624 perfusion scans (52 % female, mean age 72.2 ± 14.4 years) with stroke present in 1636 cases. From the attenuation time curves of the AIF and the penumbra, we calculated the respective bolus peak positions and investigated the distribution of the peak positions. Further, we analyzed the bolus peak positions for associations with age. RESULTS: The bolus peaked significantly later in older patients, both in the AIF and in the penumbra (all p < 0.001). In the whole cohort, we found a significant association of age with the bolus peak position of the AIF (ρ = 0.334; p < 0.001). In patients with stroke, age was also associated to the peak position of the AIF (ρ = 0.305; p < 0.001), and the penumbra (ρ = 0.246, p < 0.001). However, a substantial range of peak positions of the AIF and penumbra was noted across all age ranges. CONCLUSIONS: This study revealed a strong age-dependency of the contrast bolus arrival in both healthy and ischemic tissue. This variability makes non-uniform sampling schemes, which have been suggested to reduce radiation dose, problematic, as they might not always optimally capture the bolus in all cases.


Subject(s)
Contrast Media , Humans , Female , Male , Aged , Tomography, X-Ray Computed/methods , Aged, 80 and over , Ischemic Stroke/diagnostic imaging , Age Factors , Middle Aged , Reproducibility of Results , Cohort Studies , Stroke/diagnostic imaging
4.
Nutr Metab (Lond) ; 21(1): 45, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982517

ABSTRACT

BACKGROUND: Obesity is associated with alterations in the hypothalamic-pituitary-adrenal (HPA) axis. Effects of glucocorticoids on adipose tissues appear to depend on the specific adipose depot, in which they take place. In this study, we aimed to investigate the role of MRI-based adrenal gland volume as an imaging marker in association with different adipose tissue compartments. METHODS: The study cohort derives from the population-based research platform KORA (Cooperative Health Research in the Augsburg Region, Germany) MRI sub-study, a cross-sectional sub-study investigating the interactions between subclinical metabolic changes and cardiovascular disease in a study sample of 400 participants. Originally, eligible subjects underwent a whole-body MRI. MRI-based segmentations were performed manually and semi-automatically for adrenal gland volume, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), epi- and pericardial fat and renal sinus fat. Hepatic and pancreatic lipid content were measured as pancreatic proton density fraction (PDFF) and MR-spectroscopic hepatic fat fraction (HFF). Multivariable linear regression analyses were performed. RESULTS: A number of 307 participants (56.2 ± 9.1 years, 60.3% male, 14.3% with type 2 diabetes (T2DM), 30.6% with obesity, 34.2% with hypertension) were included. In multivariable analyses, strong positive associations between adrenal gland volume and VAT, total adipose tissue (TAT) as well as HFF persisted after extensive step-wise adjustment for possible metabolic confounders (VAT: beta = 0.31, 95%-CI [0.71, 0.81], p < 0.001; TAT: beta = 0.14, 95%-CI [0.06, 0.23], p < 0.001; HFF: beta = 1.17, 95%-CI [1.04, 1.31], p = 0.009). In contrast, associations between adrenal gland volume and SAT were attenuated in multivariate analysis after adjusting for BMI. Associations between pancreatic PDFF, epi- and pericardial fat and renal sinus fat were mediated to a great extent by VAT (pancreatic PDFF: 72%, epicardial adipose tissue: 100%, pericardial adipose tissue: 100%, renal sinus fat: 81.5%). CONCLUSION: Our results found MRI-based adrenal gland volume as a possible imaging biomarker of unfavorable adipose tissue distribution, irrespective of metabolic risk factors. Thus, adrenal gland volume may serve as a potential MRI-based biomarker of metabolic changes and contributes to an individual characterization of metabolic states and individual risk stratification. Future studies should elucidate in a longitudinal study design, if and how HPA axis activation may trigger unfavorable adipose tissue distribution and whether and to which extent this is involved in the pathogenesis of manifest metabolic syndrome.

5.
Brain Sci ; 14(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39061463

ABSTRACT

Major depressive disorder (MDD) is prevalent with a high subjective and socio-economic burden. Despite the effectiveness of classical treatment methods, 20-30% of patients stay treatment-resistant. Deep Brain Stimulation of the superolateral branch of the medial forebrain bundle is emerging as a clinical treatment. The stimulation region (ventral tegmental area, VTA), supported by experimental data, points to the role of dopaminergic (DA) transmission in disease pathology. This work sets out to develop a workflow that will allow the performance of analyses on midbrain DA-ergic neurons and projections in subjects who have committed suicide. Human midbrains were retrieved during autopsy, formalin-fixed, and scanned in a Bruker MRI scanner (7T). Sections were sliced, stained for tyrosine hydroxylase (TH), digitized, and integrated into the Montreal Neurological Institute (MNI) brain space together with a high-resolution fiber tract atlas. Subnuclei of the VTA region were identified. TH-positive neurons and fibers were semi-quantitatively evaluated. The study established a rigorous protocol allowing for parallel histological assessments and fiber tractographic analysis in a common space. Semi-quantitative readings are feasible and allow the detection of cell loss in VTA subnuclei. This work describes the intricate workflow and first results of an investigation of DA anatomy in VTA subnuclei in a growing naturalistic database.

6.
Neurooncol Adv ; 6(1): vdae093, 2024.
Article in English | MEDLINE | ID: mdl-38946879

ABSTRACT

Background: Primary CNS lymphoma (PCNSL) and glioblastoma (GBM) both represent frequent intracranial malignancies with differing clinical management. However, distinguishing PCNSL from GBM with conventional MRI can be challenging when atypical imaging features are present. We employed advanced dMRI for noninvasive characterization of the microstructure of PCNSL and differentiation from GBM as the most frequent primary brain malignancy. Methods: Multiple dMRI metrics including Diffusion Tensor Imaging, Neurite Orientation Dispersion and Density Imaging, and Diffusion Microstructure Imaging were extracted from the contrast-enhancing tumor component in 10 PCNSL and 10 age-matched GBM on 3T MRI. Imaging findings were correlated with cell density and axonal markers obtained from histopathology. Results: We found significantly increased intra-axonal volume fractions (V-intra and intracellular volume fraction) and microFA in PCNSL compared to GBM (all P < .001). In contrast, mean diffusivity (MD), axial diffusivity (aD), and microADC (all P < .001), and also free water fractions (V-CSF and V-ISO) were significantly lower in PCNSL (all P < .01). Receiver-operating characteristic analysis revealed high predictive values regarding the presence of a PCNSL for MD, aD, microADC, V-intra, ICVF, microFA, V-CSF, and V-ISO (area under the curve [AUC] in all >0.840, highest for MD and ICVF with an AUC of 0.960). Comparative histopathology between PCNSL and GBM revealed a significantly increased cell density in PCNSL and the presence of axonal remnants in a higher proportion of samples. Conclusions: Advanced diffusion imaging enables the characterization of the microstructure of PCNSL and reliably distinguishes PCNSL from GBM. Both imaging and histopathology revealed a relatively increased cell density and a preserved axonal microstructure in PCNSL.

7.
Eur Radiol Exp ; 8(1): 83, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046607

ABSTRACT

BACKGROUND: To evaluate T1ρ relaxation mapping in patients with symptomatic talar osteochondral lesions (OLT) and healthy controls (HC) at rest, with axial loading and traction. METHODS: Participants underwent 3-T ankle magnetic resonance imaging at rest and with 500 N loading and 120 N traction, without axial traction for a subcohort of 17/29 HC. We used a fast low-angle shot sequence with variable spin-lock intervals for monoexponential T1ρ fitting. Cartilage was manually segmented to extract T1ρ values. RESULTS: We studied 29 OLT patients (age 31.7 ± 7.5 years, 15 females, body mass index [BMI] 25.0 ± 3.4 kg/m2) and 29 HC (age 25.2 ± 4.3 years, 17 females, BMI 22.5 ± 2.3 kg/m2. T1ρ values of OLT (50.4 ± 3.4 ms) were higher than those of intact cartilage regions of OLT patients (47.2 ± 3.4 ms; p = 0.003) and matched HC cartilage (48.1 ± 3.3 ms; p = 0.030). Axial loading and traction induced significant T1ρ changes in the intact cartilage regions of patients (loading, mean difference -1.1 ms; traction, mean difference 1.4 ms; p = 0.030 for both) and matched HC cartilage (-2.2 ms, p = 0.003; 2.3 ms, p = 0.030; respectively), but not in the OLT itself (-1.3 ms; p = 0.150; +1.9 ms; p = 0.150; respectively). CONCLUSION: Increased T1ρ values may serve as a biomarker of cartilage degeneration in OLT. The absence of load- and traction-induced T1ρ changes in OLT compared to intact cartilage suggests that T1ρ may reflect altered biomechanical properties of hyaline cartilage. TRIAL REGISTRATION: DRKS, DRKS00024010. Registered 11 January 2021, https://drks.de/search/de/trial/DRKS00024010 . RELEVANCE STATEMENT: T1ρ mapping has the potential to evaluate compositional and biomechanical properties of the talar cartilage and may improve therapeutic decision-making in patients with osteochondral lesions. KEY POINTS: T1ρ values in osteochondral lesions increased compared to intact cartilage. Significant load- and traction-induced T1ρ changes were observed in visually intact regions and in healthy controls but not in osteochondral lesions. T1ρ may serve as an imaging biomarker for biomechanical properties of cartilage.


Subject(s)
Hyaline Cartilage , Magnetic Resonance Imaging , Talus , Humans , Female , Talus/diagnostic imaging , Adult , Male , Magnetic Resonance Imaging/methods , Hyaline Cartilage/diagnostic imaging , Biomechanical Phenomena , Biomarkers , Case-Control Studies , Cartilage, Articular/diagnostic imaging , Young Adult
8.
Sci Rep ; 14(1): 14664, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918570

ABSTRACT

Aim of this study was to analyse the associations of cardiovascular health and adrenal gland volume as a rather new imaging biomarker of chronic hypothalamic-pituitary-adrenal (HPA) axis activation. The study population originates from the KORA population-based cross-sectional prospective cohort. 400 participants without known cardiovascular disease underwent a whole-body MRI. Manual segmentation of adrenal glands was performed on VIBE-Dixon gradient-echo sequence. MRI based evaluation of cardiac parameters was achieved semi-automatically. Cardiometabolic risk factors were obtained through standardized interviews and medical examination. Univariate and multivariate associations were derived. Bi-directional causal mediation analysis was performed. 351 participants were eligible for analysis (56 ± 9.1 years, male 58.7%). In multivariate analysis, significant associations were observed between adrenal gland volume and hypertension (outcome hypertension: Odds Ratio = 1.11, 95% CI [1.01, 1.21], p = 0.028), left ventricular remodelling index (LVRI) (outcome LVRI: ß = 0.01, 95% CI [0.00, 0.02], p = 0.011), and left ventricular (LV) wall thickness (outcome LV wall thickness: ß = 0.06, 95% CI [0.02, 0.09], p = 0.005). In bi-directional causal mediation analysis adrenal gland volume had a borderline significant mediating effect on the association between hypertension and LVRI (p = 0.052) as well as wall thickness (p = 0.054). MRI-based assessment of adrenal gland enlargement is associated with hypertension and LV remodelling. Adrenal gland volume may serve as an indirect cardiovascular imaging biomarker.


Subject(s)
Adrenal Glands , Cardiovascular Diseases , Magnetic Resonance Imaging , Humans , Male , Middle Aged , Adrenal Glands/diagnostic imaging , Adrenal Glands/pathology , Magnetic Resonance Imaging/methods , Female , Cardiovascular Diseases/diagnostic imaging , Cross-Sectional Studies , Aged , Prospective Studies , Hypertension/diagnostic imaging , Hypertension/pathology , Ventricular Remodeling , Organ Size , Hypothalamo-Hypophyseal System/diagnostic imaging , Pituitary-Adrenal System/diagnostic imaging
9.
Ann Neurol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934493

ABSTRACT

OBJECTIVE: To investigate whether choroid plexus volumes in subacute coronavirus disease 2019 (COVID-19) patients with neurological symptoms could indicate inflammatory activation or barrier dysfunction and assess their association with clinical data. METHODS: Choroid plexus volumes were measured in 28 subacute COVID-19 patients via cerebral magnetic resonance imaging (MRI), compared with those in infection-triggered non-COVID-19 encephalopathy patients (n = 25), asymptomatic individuals after COVID-19 (n = 21), and healthy controls (n = 21). Associations with inflammatory serum markers (peak counts of leukocytes, C-reactive protein [CRP], interleukin 6), an MRI-based marker of barrier dysfunction (CSF volume fraction [V-CSF]), and clinical parameters like olfactory performance and cognitive scores (Montreal Cognitive Assessment) were investigated. RESULTS: COVID-19 patients showed significantly larger choroid plexus volumes than control groups (p < 0.001, η2 = 0.172). These volumes correlated significantly with peak leukocyte levels (p = 0.001, Pearson's r = 0.621) and V-CSF (p = 0.009, Spearman's rho = 0.534), but neither with CRP nor interleukin 6. No significant correlations were found with clinical parameters. INTERPRETATION: In patients with subacute COVID-19, choroid plexus volume is a marker of central nervous system inflammation and barrier dysfunction in the presence of neurologic symptoms. The absence of plexus enlargement in infection-triggered non-COVID-19 encephalopathy suggests a specific severe acute respiratory syndrome coronavirus 2 effect. This study also documents an increase in choroid plexus volume for the first time as a parainfectious event. ANN NEUROL 2024.

10.
Brain Sci ; 14(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928612

ABSTRACT

Cerebral intraparenchymal hemorrhage due to electrode implantation (CIPHEI) is a rare but serious complication of deep brain stimulation (DBS) surgery. This study retrospectively investigated a large single-center cohort of DBS implantations to calculate the frequency of CIPHEI and identify patient- and procedure-related risk factors for CIPHEI and their potential interactions. We analyzed all DBS implantations between January 2013 and December 2021 in a generalized linear model for binomial responses using bias reduction to account for sparse sampling of CIPHEIs. As potential risk factors, we considered age, gender, history of arterial hypertension, level of invasivity, types of micro/macroelectrodes, and implanted DBS electrodes. If available, postoperative coagulation and platelet function were exploratorily assessed in CIPHEI patients. We identified 17 CIPHEI cases across 839 electrode implantations in 435 included procedures in 418 patients (3.9%). Exploration and cross-validation analyses revealed that the three-way interaction of older age (above 60 years), high invasivity (i.e., use of combined micro/macroelectrodes), and implantation of directional DBS electrodes accounted for 82.4% of the CIPHEI cases. Acquired platelet dysfunction was present only in one CIPHEI case. The findings at our center suggested implantation of directional DBS electrodes as a new potential risk factor, while known risks of older age and high invasivity were confirmed. However, CIPHEI risk is not driven by the three factors alone but by their combined presence. The contributions of the three factors to CIPHEI are hence not independent, suggesting that potentially modifiable procedural risks should be carefully evaluated when planning DBS surgery in patients at risk.

11.
Nat Commun ; 15(1): 4256, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762609

ABSTRACT

After contracting COVID-19, a substantial number of individuals develop a Post-COVID-Condition, marked by neurologic symptoms such as cognitive deficits, olfactory dysfunction, and fatigue. Despite this, biomarkers and pathophysiological understandings of this condition remain limited. Employing magnetic resonance imaging, we conduct a comparative analysis of cerebral microstructure among patients with Post-COVID-Condition, healthy controls, and individuals that contracted COVID-19 without long-term symptoms. We reveal widespread alterations in cerebral microstructure, attributed to a shift in volume from neuronal compartments to free fluid, associated with the severity of the initial infection. Correlating these alterations with cognition, olfaction, and fatigue unveils distinct affected networks, which are in close anatomical-functional relationship with the respective symptoms.


Subject(s)
COVID-19 , Cognitive Dysfunction , Fatigue , Magnetic Resonance Imaging , Olfaction Disorders , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19/physiopathology , COVID-19/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/virology , Male , Fatigue/physiopathology , Female , Middle Aged , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/virology , Olfaction Disorders/physiopathology , Adult , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Post-Acute COVID-19 Syndrome , Aged
13.
Eur Radiol Exp ; 8(1): 60, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755410

ABSTRACT

BACKGROUND: We investigated the potential of an imaging-aware GPT-4-based chatbot in providing diagnoses based on imaging descriptions of abdominal pathologies. METHODS: Utilizing zero-shot learning via the LlamaIndex framework, GPT-4 was enhanced using the 96 documents from the Radiographics Top 10 Reading List on gastrointestinal imaging, creating a gastrointestinal imaging-aware chatbot (GIA-CB). To assess its diagnostic capability, 50 cases on a variety of abdominal pathologies were created, comprising radiological findings in fluoroscopy, MRI, and CT. We compared the GIA-CB to the generic GPT-4 chatbot (g-CB) in providing the primary and 2 additional differential diagnoses, using interpretations from senior-level radiologists as ground truth. The trustworthiness of the GIA-CB was evaluated by investigating the source documents as provided by the knowledge-retrieval mechanism. Mann-Whitney U test was employed. RESULTS: The GIA-CB demonstrated a high capability to identify the most appropriate differential diagnosis in 39/50 cases (78%), significantly surpassing the g-CB in 27/50 cases (54%) (p = 0.006). Notably, the GIA-CB offered the primary differential in the top 3 differential diagnoses in 45/50 cases (90%) versus g-CB with 37/50 cases (74%) (p = 0.022) and always with appropriate explanations. The median response time was 29.8 s for GIA-CB and 15.7 s for g-CB, and the mean cost per case was $0.15 and $0.02, respectively. CONCLUSIONS: The GIA-CB not only provided an accurate diagnosis for gastrointestinal pathologies, but also direct access to source documents, providing insight into the decision-making process, a step towards trustworthy and explainable AI. Integrating context-specific data into AI models can support evidence-based clinical decision-making. RELEVANCE STATEMENT: A context-aware GPT-4 chatbot demonstrates high accuracy in providing differential diagnoses based on imaging descriptions, surpassing the generic GPT-4. It provided formulated rationale and source excerpts supporting the diagnoses, thus enhancing trustworthy decision-support. KEY POINTS: • Knowledge retrieval enhances differential diagnoses in a gastrointestinal imaging-aware chatbot (GIA-CB). • GIA-CB outperformed the generic counterpart, providing formulated rationale and source excerpts. • GIA-CB has the potential to pave the way for AI-assisted decision support systems.


Subject(s)
Proof of Concept Study , Humans , Diagnosis, Differential , Gastrointestinal Diseases/diagnostic imaging
14.
Neuroimage Clin ; 42: 103607, 2024.
Article in English | MEDLINE | ID: mdl-38643635

ABSTRACT

BACKGROUND: Nigrostriatal microstructural integrity has been suggested as a biomarker for levodopa response in Parkinson's disease (PD), which is a strong predictor for motor response to deep brain stimulation (DBS) of the subthalamic nucleus (STN). This study aimed to explore the impact of microstructural integrity of the substantia nigra (SN), STN, and putamen on motor response to STN-DBS using diffusion microstructure imaging. METHODS: Data was collected from 23 PD patients (mean age 63 ± 7, 6 females) who underwent STN-DBS, had preoperative 3 T diffusion magnetic resonance imaging including multishell diffusion-weighted MRI with b-values of 1000 and 2000 s/mm2 and records of motor improvement available. RESULTS: The association between a poorer DBS-response and increased free interstitial fluid showed notable effect sizes (rho > |0.4|) in SN and STN, but not in putamen. However, this did not reach significance after Bonferroni correction and controlling for sex and age. CONCLUSION: Microstructural integrity of SN and STN are potential biomarkers for the prediction of therapy efficacy following STN-DBS, but further studies are required to confirm these associations.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Substantia Nigra , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/pathology , Female , Male , Parkinson Disease/therapy , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Middle Aged , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Aged , Diffusion Magnetic Resonance Imaging/methods , Treatment Outcome
15.
Radiol Med ; 129(6): 890-900, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689182

ABSTRACT

PURPOSE: Artifacts caused by metallic implants remain a challenge in computed tomography (CT). We investigated the impact of photon-counting detector computed tomography (PCD-CT) for artifact reduction in patients with orthopedic implants with respect to image quality and diagnostic confidence using different artifact reduction approaches. MATERIAL AND METHODS: In this prospective study, consecutive patients with orthopedic implants underwent PCD-CT imaging of the implant area. Four series were reconstructed for each patient (clinical standard reconstruction [PCD-CTStd], monoenergetic images at 140 keV [PCD-CT140keV], iterative metal artifact reduction (iMAR) corrected [PCD-CTiMAR], combination of iMAR and 140 keV monoenergetic [PCD-CT140keV+iMAR]). Subsequently, three radiologists evaluated the reconstructions in a random and blinded manner for image quality, artifact severity, anatomy delineation (adjacent and distant), and diagnostic confidence using a 5-point Likert scale (5 = excellent). In addition, the coefficient of variation [CV] and the relative quantitative artifact reduction potential were obtained as objective measures. RESULTS: We enrolled 39 patients with a mean age of 67.3 ± 13.2 years (51%; n = 20 male) and a mean BMI of 26.1 ± 4 kg/m2. All image quality measures and diagnostic confidence were significantly higher for the iMAR vs. non-iMAR reconstructions (all p < 0.001). No significant effect of the different artifact reduction approaches on CV was observed (p = 0.26). The quantitative analysis indicated the most effective artifact reduction for the iMAR reconstructions, which was higher than PCD-CT140keV (p < 0.001). CONCLUSION: PCD-CT allows for effective metal artifact reduction in patients with orthopedic implants, resulting in superior image quality and diagnostic confidence with the potential to improve patient management and clinical decision making.


Subject(s)
Artifacts , Metals , Tomography, X-Ray Computed , Humans , Male , Female , Aged , Prospective Studies , Tomography, X-Ray Computed/methods , Middle Aged , Prostheses and Implants , Aged, 80 and over , Photons , Radiographic Image Interpretation, Computer-Assisted/methods
16.
J Neurol ; 271(7): 4336-4347, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643444

ABSTRACT

BACKGROUND AND OBJECTIVE: Spontaneous intracranial hypotension (SIH) is an underdiagnosed disease. To depict the accurate diagnosis can be demanding; especially the detection of CSF-venous fistulas poses many challenges. Potential dynamic biomarkers have been identified through non-invasive phase-contrast MRI in a limited subset of SIH patients with evidence of spinal longitudinal extradural collection. This study aimed to explore these biomarkers related to spinal cord motion and CSF velocities in a broader SIH cohort. METHODS: A retrospective, monocentric pooled-data analysis was conducted of patients suspected to suffer from SIH who underwent phase-contrast MRI for spinal cord and CSF velocity measurements at segment C2/C3 referred to a tertiary center between February 2022 and June 2023. Velocity ranges (mm/s), total displacement (mm), and further derivatives were assessed and compared to data from the database of 70 healthy controls. RESULTS: In 117 patients, a leak was located (54% ventral leak, 20% lateral leak, 20% CSF-venous fistulas, 6% sacral leaks). SIH patients showed larger spinal cord and CSF velocities than healthy controls: e.g., velocity range 7.6 ± 3 mm/s vs. 5.6 ± 1.4 mm/s, 56 ± 21 mm/s vs. 42 ± 10 mm/s, p < 0.001, respectively. Patients with lateral leaks and CSF-venous fistulas exhibited an exceptionally heightened level of spinal cord motion (e.g., velocity range 8.4 ± 3.3 mm/s; 8.2 ± 3.1 mm/s vs. 5.6 ± 1.4 mm/s, p < 0.001, respectively). CONCLUSION: Phase-contrast MRI might become a valuable tool for SIH diagnosis, especially in patients with CSF-venous fistulas without evidence of spinal extradural fluid collection.


Subject(s)
Biomarkers , Intracranial Hypotension , Magnetic Resonance Imaging , Humans , Intracranial Hypotension/diagnostic imaging , Intracranial Hypotension/cerebrospinal fluid , Female , Male , Middle Aged , Retrospective Studies , Adult , Biomarkers/cerebrospinal fluid , Aged , Spinal Cord/diagnostic imaging , Cerebrospinal Fluid Leak/diagnostic imaging
17.
Spinal Cord ; 62(7): 371-377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38627568

ABSTRACT

DESIGN: Prospective diagnostic study. OBJECTIVES: Anatomical evaluation and graduation of the severity of spinal stenosis is essential in degenerative cervical spine disease. In clinical practice, this is subjectively categorized on cervical MRI lacking an objective and reliable classification. We implemented a fully-automated quantification of spinal canal compromise through 3D T2-weighted MRI segmentation. SETTING: Medical Center - University of Freiburg, Germany. METHODS: Evaluation of 202 participants receiving 3D T2-weighted MRI of the cervical spine. Segments C2/3 to C6/7 were analyzed for spinal cord and cerebrospinal fluid space volume through a fully-automated segmentation based on a trained deep convolutional neural network. Spinal canal narrowing was characterized by relative values, across sever segments as adapted Maximal Canal Compromise (aMCC), and within the index segment as adapted Spinal Cord Occupation Ratio (aSCOR). Additionally, all segments were subjectively categorized by three observers as "no", "relative" or "absolute" stenosis. Computed scores were applied on the subjective categorization. RESULTS: 798 (79.0%) segments were subjectively categorized as "no" stenosis, 85 (8.4%) as "relative" stenosis, and 127 (12.6%) as "absolute" stenosis. The calculated scores revealed significant differences between each category (p ≤ 0.001). Youden's Index analysis of ROC curves revealed optimal cut-offs to distinguish between "no" and "relative" stenosis for aMCC = 1.18 and aSCOR = 36.9%, and between "relative" and "absolute" stenosis for aMCC = 1.54 and aSCOR = 49.3%. CONCLUSION: The presented fully-automated segmentation algorithm provides high diagnostic accuracy and objective classification of cervical spinal stenosis. The calculated cut-offs can be used for convenient radiological quantification of the severity of spinal canal compromise in clinical routine.


Subject(s)
Cervical Vertebrae , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Spinal Stenosis , Humans , Spinal Stenosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Aged , Imaging, Three-Dimensional/methods , Cervical Vertebrae/diagnostic imaging , Prospective Studies , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Adult , Severity of Illness Index , Aged, 80 and over , Cerebrospinal Fluid/diagnostic imaging
18.
JCO Clin Cancer Inform ; 8: e2300231, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588476

ABSTRACT

PURPOSE: Body composition (BC) may play a role in outcome prognostication in patients with gastroesophageal adenocarcinoma (GEAC). Artificial intelligence provides new possibilities to opportunistically quantify BC from computed tomography (CT) scans. We developed a deep learning (DL) model for fully automatic BC quantification on routine staging CTs and determined its prognostic role in a clinical cohort of patients with GEAC. MATERIALS AND METHODS: We developed and tested a DL model to quantify BC measures defined as subcutaneous and visceral adipose tissue (VAT) and skeletal muscle on routine CT and investigated their prognostic value in a cohort of patients with GEAC using baseline, 3-6-month, and 6-12-month postoperative CTs. Primary outcome was all-cause mortality, and secondary outcome was disease-free survival (DFS). Cox regression assessed the association between (1) BC at baseline and mortality and (2) the decrease in BC between baseline and follow-up scans and mortality/DFS. RESULTS: Model performance was high with Dice coefficients ≥0.94 ± 0.06. Among 299 patients with GEAC (age 63.0 ± 10.7 years; 19.4% female), 140 deaths (47%) occurred over a median follow-up of 31.3 months. At baseline, no BC measure was associated with DFS. Only a substantial decrease in VAT >70% after a 6- to 12-month follow-up was associated with mortality (hazard ratio [HR], 1.99 [95% CI, 1.18 to 3.34]; P = .009) and DFS (HR, 1.73 [95% CI, 1.01 to 2.95]; P = .045) independent of age, sex, BMI, Union for International Cancer Control stage, histologic grading, resection status, neoadjuvant therapy, and time between surgery and follow-up CT. CONCLUSION: DL enables opportunistic estimation of BC from routine staging CT to quantify prognostic information. In patients with GEAC, only a substantial decrease of VAT 6-12 months postsurgery was an independent predictor for DFS beyond traditional risk factors, which may help to identify individuals at high risk who go otherwise unnoticed.


Subject(s)
Adenocarcinoma , Deep Learning , Humans , Female , Middle Aged , Aged , Male , Artificial Intelligence , Prognosis , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/surgery , Body Composition
19.
Dtsch Arztebl Int ; 121(9): 284-290, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38530931

ABSTRACT

BACKGROUND: Population-wide research on potential new imaging biomarkers of the kidney depends on accurate automated segmentation of the kidney and its compartments (cortex, medulla, and sinus). METHODS: We developed a robust deep-learning framework for kidney (sub-)segmentation based on a hierarchical, three-dimensional convolutional neural network (CNN) that was optimized for multiscale problems of combined localization and segmentation. We applied the CNN to abdominal magnetic resonance images from the population-based German National Cohort (NAKO) study. RESULTS: There was good to excellent agreement between the model predictions and manual segmentations. The median values for the body-surface normalized total kidney, cortex, medulla, and sinus volumes of 9934 persons were 158, 115, 43, and 24 mL/m2. Distributions of these markers are provided both for the overall study population and for a subgroup of persons without kidney disease or any associated conditions. Multivariable adjusted regression analyses revealed that diabetes, male sex, and a higher estimated glomerular filtration rate (eGFR) are important predictors of higher total and cortical volumes. Each increase of eGFR by one unit (i.e., 1 mL/min per 1.73 m2 body surface area) was associated with a 0.98 mL/m2 increase in total kidney volume, and this association was significant. Volumes were lower in persons with eGFR-defined chronic kidney disease. CONCLUSION: The extraction of image-based biomarkers through CNN-based renal sub-segmentation using data from a population-based study yields reliable results, forming a solid foundation for future investigations.


Subject(s)
Kidney , Magnetic Resonance Imaging , Humans , Male , Female , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/statistics & numerical data , Kidney/diagnostic imaging , Middle Aged , Aged , Adult , Germany , Glomerular Filtration Rate/physiology , Biomarkers/analysis , Neural Networks, Computer , Deep Learning , Cohort Studies
20.
Neuroradiology ; 66(5): 749-759, 2024 May.
Article in English | MEDLINE | ID: mdl-38498208

ABSTRACT

PURPOSE: CT perfusion of the brain is a powerful tool in stroke imaging, though the radiation dose is rather high. Several strategies for dose reduction have been proposed, including increasing the intervals between the dynamic scans. We determined the impact of temporal resolution on perfusion metrics, therapy decision, and radiation dose reduction in brain CT perfusion from a large dataset of patients with suspected stroke. METHODS: We retrospectively included 3555 perfusion scans from our clinical routine dataset. All cases were processed using the perfusion software VEOcore with a standard sampling of 1.5 s, as well as simulated reduced temporal resolution of 3.0, 4.5, and 6.0 s by leaving out respective time points. The resulting perfusion maps and calculated volumes of infarct core and mismatch were compared quantitatively. Finally, hypothetical decisions for mechanical thrombectomy following the DEFUSE-3 criteria were compared. RESULTS: The agreement between calculated volumes for core (ICC = 0.99, 0.99, and 0.98) and hypoperfusion (ICC = 0.99, 0.99, and 0.97) was excellent for all temporal sampling schemes. Of the 1226 cases with vascular occlusion, 14 (1%) for 3.0 s sampling, 23 (2%) for 4.5 s sampling, and 63 (5%) for 6.0 s sampling would have been treated differently if the DEFUSE-3 criteria had been applied. Reduction of temporal resolution to 3.0 s, 4.5 s, and 6.0 s reduced the radiation dose by a factor of 2, 3, or 4. CONCLUSION: Reducing the temporal sampling of brain perfusion CT has only a minor impact on image quality and treatment decision, but significantly reduces the radiation dose to that of standard non-contrast CT.


Subject(s)
Brain Ischemia , Stroke , Humans , Retrospective Studies , Drug Tapering , Stroke/diagnostic imaging , Stroke/therapy , Brain/diagnostic imaging , Brain/blood supply , Tomography, X-Ray Computed/methods , Brain Ischemia/therapy , Perfusion , Perfusion Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL