Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 350
Filter
1.
J Dev Behav Pediatr ; 45(4): e365-e371, 2024.
Article in English | MEDLINE | ID: mdl-38990140

ABSTRACT

OBJECTIVE: Klinefelter syndrome (KS) is the most common sex-chromosome aneuploidy (47,XXY), affecting 1 in 500 male participants. The phenotype of male participants with KS includes both physical features, such as tall stature and testicular insufficiency, and behavioral alterations, including difficulties in social functioning, anxiety, and depression. Studies examining underlying neural alterations associated with the behavioral phenotype, however, are sparse. We aimed to address this gap in knowledge using functional magnetic resonance imaging in conjunction with an emotion processing paradigm. METHOD: Functional magnetic resonance imaging was conducted on 38 children and adolescents with KS ( Mage = 12.85, SD = 2.45) and 47 typical developing (control) boys ( Mage = 12.04, SD = 1.82) as they completed a facial emotion processing task. Group differences in activation occurring during the processing of angry versus neutral faces were examined while controlling for age. RESULTS: The results indicated that relative to typically developing boys, boys with KS exhibited anomalous increases in activation of frontal, temporal, and occipital cortices. Within the KS group, secondary analyses indicated that greater activation in these regions was associated with more internalizing symptoms (e.g., anxiety, depression, withdrawn behaviors) and greater social impairments (e.g., social cognition, social communication, social motivation, social communication and interaction, functional communication). CONCLUSION: The findings from this study indicate a possible neural correlation for difficulties in social and emotional function in KS and add to a growing body of research aimed at increasing our understanding of neural biomarkers in this condition. Future studies that examine the influence of testosterone-replacement therapy on these differences are warranted.


Subject(s)
Facial Recognition , Klinefelter Syndrome , Magnetic Resonance Imaging , Humans , Klinefelter Syndrome/physiopathology , Male , Adolescent , Child , Facial Recognition/physiology , Emotions/physiology , Facial Expression , Social Perception , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging
2.
Neurotoxicology ; 103: 206-214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38908438

ABSTRACT

BACKGROUND: Early life exposure to organophosphate (OP) pesticides is linked with adverse neurodevelopment and brain function in children. However, we have limited knowledge of how these exposures affect functional connectivity, a measure of interaction between brain regions. To address this gap, we examined the association between early life OP pesticide exposure and functional connectivity in adolescents. METHODS: We administered functional near-infrared spectroscopy (fNIRS) to 291 young adults with measured prenatal or childhood dialkylphosphates (DAPs) in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study, a longitudinal study of women recruited during pregnancy and their offspring. We measured DAPs in urinary samples collected from mothers during pregnancy (13 and 26 weeks) and children in early life (ages 6 months, 1, 2, 3, and 5 years). Youth underwent fNIRS while they performed executive function and semantic language tasks during their 18-year-old visit. We used covariate-adjusted regression models to estimate the associations of prenatal and childhood DAPs with functional connectivity between the frontal, temporal, and parietal regions, and a mediation model to examine the role of functional connectivity in the relationship between DAPs and task performance. RESULTS: We observed null associations of prenatal and childhood DAP concentrations and functional connectivity for the entire sample. However, when we looked for sex differences, we observed an association between childhood DAPs and functional connectivity for the right interior frontal and premotor cortex after correcting for the false discovery rate, among males, but not females. In addition, functional connectivity appeared to mediate an inverse association between DAPs and working memory accuracy among males. CONCLUSION: In CHAMACOS, a secondary analysis showed that adolescent males with elevated childhood OP pesticide exposure may have altered brain regional connectivity. This altered neurofunctional pattern in males may partially mediate working memory impairment associated with childhood DAP exposure.


Subject(s)
Memory, Short-Term , Pesticides , Prenatal Exposure Delayed Effects , Humans , Female , Adolescent , Male , Memory, Short-Term/drug effects , Pesticides/toxicity , Pesticides/adverse effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Longitudinal Studies , Brain/drug effects , Brain/diagnostic imaging , Spectroscopy, Near-Infrared , Child, Preschool , Infant , Young Adult , Organophosphorus Compounds/urine , Organophosphorus Compounds/toxicity , Organophosphorus Compounds/adverse effects , Organophosphates/toxicity , Organophosphates/adverse effects , Organophosphates/urine , Environmental Exposure/adverse effects
3.
Biol Psychiatry ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945386

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is a genetic condition associated with increased risk for social anxiety and avoidance. Using functional near-infrared spectroscopy (fNIRS), we previously demonstrated aberrant neural activity responding to faces in young girls with FXS cross-sectionally. Here, we tested the hypothesis that abnormalities in neural activation and sensitization would increase with age in 65 girls with FXS (ages 6-16 years) relative to an age-matched control group of 52 girls who had comparable cognitive function and clinical symptoms. METHODS: fNIRS data were collected at 2 time points (mean [SD] = 2.8 [0.6] years apart) during a face processing task. Linear mixed-effect models examined longitudinal neural profiles in girls with FXS and control participants. Correlational analysis was performed to examine associations between neural sensitization (increasing neural response to repeated stimuli) and clinical ratings. RESULTS: In the FXS group, 24 participants had 1 fNIRS scan, and 32 had 2 scans. In the control group, 28 participants had 1 fNIRS scan, and 22 had 2 scans. Brain activations in the superior frontal gyrus were higher in girls with FXS than control participants at both time points. Neural sensitization also increased in girls with FXS at a higher rate than control participants in the superior frontal gyrus when responding to upright faces. For the FXS group, sensitization in the superior frontal gyrus positively correlated with longitudinal increases in anxiety and social avoidance scores. CONCLUSIONS: Girls with FXS show increasingly abnormal neural activation and sensitization responding to faces over time. Aberrant neural sensitization in girls with FXS is associated with longitudinal changes in anxiety and social skills.

4.
Article in English | MEDLINE | ID: mdl-38904702

ABSTRACT

BACKGROUND: Klinefelter syndrome (KS), also referred to as XXY syndrome, is a significant but inadequately studied risk factor for neuropsychiatric disability. Whether alterations in functional brain connectivity or pubertal delays are associated with aberrant cognitive-behavioral outcomes in individuals with KS is largely unknown. In this observational study, we investigated KS-related alterations in the resting-state brain network, testosterone level, and cognitive-behavioral impairment in adolescents with Klinefelter syndrome. METHODS: We recruited 46 boys with KS, ages 8 to 17 years, and 51 age-matched typically developing (TD) boys. All participants underwent resting-state functional magnetic resonance imaging scans, pubertal, and cognitive-behavioral assessments. Resting-state functional connectivity and regional brain activity of the participants were assessed. RESULTS: We found widespread alterations in global functional connectivity among the inferior frontal gyrus, temporal-parietal area, and hippocampus in boys with KS. Aberrant regional activities, including enhanced fALFF in the motor area and reduced ReHo in the caudate, were also found in the KS group compared to the TD children. Further, using machine learning methods, brain network alterations in these regions accurately differentiated boys with KS from TD controls. Finally, we showed that the alterations of brain network properties not only effectively predict cognitive-behavioral impairment in boys with KS, but also appear to mediate the association between total testosterone level and language ability, a cognitive domain at particular risk for dysfunction in this condition. CONCLUSION: Our results offer an informatic neurobiological foundation for understanding cognitive-behavioral impairments in individuals with KS and contribute to our understanding of the interplay between pubertal status, brain function, and cognitive-behavioral outcome in this population.

5.
Environ Res ; 242: 117756, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38016496

ABSTRACT

BACKGROUND: Early life exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment from infancy to adolescence. In our Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort, we previously reported that residential proximity to OP use during pregnancy was associated with altered cortical activation using functional near infrared spectroscopy (fNIRS) in a small subset (n = 95) of participants at age 16 years. METHODS: We administered fNIRS to 291 CHAMACOS young adults at the 18-year visit. Using covariate-adjusted regression models, we estimated associations of prenatal and childhood urinary dialkylphosphates (DAPs), non-specific OP metabolites, with cortical activation in the frontal, temporal, and parietal regions of the brain during tasks of executive function and semantic language. RESULTS: There were some suggestive associations for prenatal DAPs with altered activation patterns in both the inferior frontal and inferior parietal lobes of the left hemisphere during a task of cognitive flexibility (ß per ten-fold increase in DAPs = 3.37; 95% CI: -0.02, 6.77 and ß = 3.43; 95% CI: 0.64, 6.22, respectively) and the inferior and superior frontal pole/dorsolateral prefrontal cortex of the right hemisphere during the letter retrieval working memory task (ß = -3.10; 95% CI: -6.43, 0.22 and ß = -3.67; 95% CI: -7.94, 0.59, respectively). We did not observe alterations in cortical activation with prenatal DAPs during a semantic language task or with childhood DAPs during any task. DISCUSSION: We observed associations of prenatal OP concentrations with mild alterations in cortical activation during tasks of executive function. Associations with childhood exposure were null. This is reasonably consistent with studies of prenatal OPs and neuropsychological measures of attention and executive function found in CHAMACOS and other birth cohorts.


Subject(s)
Insecticides , Pesticides , Prenatal Exposure Delayed Effects , Adolescent , Child , Female , Humans , Pregnancy , Brain/diagnostic imaging , Functional Neuroimaging , Maternal Exposure/adverse effects , Organophosphates/toxicity , Organophosphates/urine , Organophosphorus Compounds/toxicity , Pesticides/toxicity , Pesticides/urine , Prenatal Exposure Delayed Effects/chemically induced
6.
J Am Acad Child Adolesc Psychiatry ; 63(1): 65-79, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37406770

ABSTRACT

OBJECTIVE: White matter alterations are frequently reported in autism spectrum disorder (ASD), yet the etiology is currently unknown. The objective of this investigation was to examine, for the first time, the impact of genetic and environmental factors on white matter microstructure in twins with ASD compared to control twins without ASD. METHOD: Diffusion-weighted MRIs were obtained from same-sex twin pairs (6-15 years of age) in which at least 1 twin was diagnosed with ASD or neither twin exhibited a history of neurological or psychiatric disorders. Fractional anisotropy (FA) and mean diffusivity (MD) were examined across different white matter tracts in the brain, and statistical and twin modeling were completed to assess the proportion of variation associated with additive genetic (A) and common/shared (C) or unique (E) environmental factors. We also developed a novel Twin-Pair Difference Score analysis method that produces quantitative estimates of the genetic and environmental contributions to shared covariance between different brain and behavioral traits. RESULTS: Good-quality data were available from 84 twin pairs, 50 ASD pairs (32 concordant for ASD [16 monozygotic; 16 dizygotic], 16 discordant for ASD [3 monozygotic; 13 dizygotic], and 2 pairs in which 1 twin had ASD and the other exhibited some subthreshold symptoms [1 monozygotic; 1 dizygotic]) and 34 control pairs (20 monozygotic; 14 dizygotic). Average FA and MD across the brain, respectively, were primarily genetically mediated in both control twins (A = 0.80, 95% CI [0.57, 1.02]; A = 0.80 [0.55, 1.04]) and twins concordant for having ASD (A = 0.71 [0.33, 1.09]; A = 0.84 [0.32,1.36]). However, there were also significant tract-specific differences between groups. For instance, genetic effects on commissural fibers were primarily associated with differences in general cognitive abilities and perhaps some diagnostic differences for ASD because Twin-Pair Difference-Score analysis indicated that genetic factors may have contributed to ∼40% to 50% of the covariation between IQ scores and FA of the corpus callosum. Conversely, the increased impact of environmental factors on some projection and association fibers were primarily associated with differences in symptom severity in twins with ASD; for example, our analyses suggested that unique environmental factors may have contributed to ∼10% to 20% of the covariation between autism-related symptom severity and FA of the cerebellar peduncles and external capsule. CONCLUSION: White matter alterations in youth with ASD are associated with both genetic contributions and potentially increased vulnerability or responsivity to environmental influences. DIVERSITY & INCLUSION STATEMENT: We worked to ensure sex and gender balance in the recruitment of human participants. We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. One or more of the authors of this paper self-identifies as living with a disability. The author list of this paper includes contributors from the location and/or community where the research was conducted and they participated in the data collection, design, analysis, and/or interpretation of the work.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , White Matter , Male , Female , Humans , Adolescent , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , White Matter/diagnostic imaging , Twins, Monozygotic/genetics , Brain/diagnostic imaging , Autistic Disorder/genetics
7.
Res Dev Disabil ; 143: 104622, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37939495

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism in males and females. Females with FXS typically display a milder cognitive phenotype than males, despite experiencing significant developmental, behavioral, and social-emotional issues. AIMS: To measure and distinguish the cognitive-behavioral profile of girls with FXS relative to verbal IQ-matched peers. METHODS AND PROCEDURES: Ninety-seven participants (NFXS=55, Ncomparison=42) six to 16 years of age completed assessments evaluating cognition, academic achievement, and adaptive behavior. The comparison group consisted of age-, sex-, and verbal IQ-matched peers. OUTCOMES AND RESULTS: Consistent with previous studies, the FXS group demonstrated mean cognitive skills, academic achievement, and adaptive behavior in the borderline to low average range. On average, the FXS group showed poorer nonverbal reasoning, visual pattern recognition, verbal abstraction, math abilities, attention, inhibitory control, and working memory than the comparison group. There were no significant group differences in adaptive behavior. Different patterns of associations between cognition and selected outcomes emerged in each group. CONCLUSIONS AND IMPLICATIONS: Results highlight the importance of identifying specific cognitive-behavioral profiles in girls with FXS to inform more targeted interventions for optimizing outcomes and quality of life in this population.


Subject(s)
Academic Success , Fragile X Syndrome , Male , Female , Humans , Child , Fragile X Syndrome/psychology , Quality of Life , Cognition , Adaptation, Psychological
8.
J Dev Behav Pediatr ; 44(7): e476-e485, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37696031

ABSTRACT

OBJECTIVE: Klinefelter syndrome (KS; 47, XXY), the most common sex chromosome aneuploidy in males, is characterized by testicular failure and testosterone deficiency as well as a variety of cognitive, social, and emotional challenges. In the current study, we aimed to clarify the cognitive-behavioral profile of peripubertal boys with KS using measures of cognition, academic achievement, adaptive behavior, and quality of life. METHOD: We compared 47 boys with KS (7-16 years of age) with 55 performance IQ-matched boys without KS on measures of cognition (WISC-V), executive function (BRIEF-2), academic achievement (KTEA-3), adaptive behavior (Vineland-3), and quality of life (PROMIS). In exploratory analyses, we examined associations among these measures and potential associations with pubertal metrics. RESULTS: Boys with KS demonstrated a significantly different profile of cognition, behavioral ratings of executive function, academic achievement, adaptive behavior, and quality of life compared with their typically developing peers, with, on average, lower functioning. The groups showed significantly different correlations between cognition and aspects of quality of life. No associations were observed between behavior and pubertal development. CONCLUSION: Taken together, these findings indicated that boys with KS are at increased risk for cognitive difficulties, which may affect academic achievement, adaptive behavior, and quality of life. Although initial exploratory analyses indicated that the magnitude of these alterations was not correlated with severity of testicular failure, longitudinal analyses currently being conducted by our group may help clarify the trajectory of these difficulties through the pubertal transition and testosterone replacement.


Subject(s)
Academic Success , Klinefelter Syndrome , Male , Adolescent , Child , Humans , Quality of Life , Cognition , Adaptation, Psychological , Testosterone
9.
J Neurosci Res ; 101(12): 1803-1813, 2023 12.
Article in English | MEDLINE | ID: mdl-37654210

ABSTRACT

Gender-based microaggressions have been associated with persistent disparities between women and men in academia. Little is known about the neural mechanisms underlying those often subtle and unintentional yet detrimental behaviors. Here, we assessed the neural responses to gender-based microaggressions in 28 early career faculty in medicine (N = 16 female, N = 12 male sex) using fMRI. Participants watched 33 videos of situations demonstrating gender-based microaggressions and control situations in academic medicine. Video topics had been previously identified through real-life anecdotes about microaggression from women faculty and were scripted and reenacted using professional actors. Primary voxel-wise analyses comparing group differences in activation elucidated a significant group by condition interaction in a right-lateralized cluster across the frontal (inferior and middle frontal gyri, frontal pole, precentral gyrus, postcentral gyrus) and parietal lobes (supramarginal gyrus, angular gyrus). Whereas women faculty exhibited reduced activation in these regions during the microaggression relative to the control condition, the opposite was true for men. Posthoc analyses showed that these patterns were significantly associated with the degree to which participants reported feeling judged for their gender in academic medicine. Lastly, secondary exploratory ROI analyses showed significant between-group differences in the right dorsolateral prefrontal cortex and inferior frontal gyrus. Women activated these two regions less in the microaggression condition compared to the control condition, whereas men did not. These findings indicate that the observation of gender-based microaggressions results in a specific pattern of neural reactivity in women early career faculty.


Subject(s)
Brain , Microaggression , Humans , Male , Female , Brain/diagnostic imaging , Emotions/physiology , Prefrontal Cortex , Frontal Lobe
10.
J Clin Endocrinol Metab ; 109(1): e88-e95, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37595261

ABSTRACT

CONTEXT: Executive dysfunction is a well-recognized component of the cognitive phenotype of Klinefelter syndrome (KS), yet the neural basis of KS-associated cognitive weaknesses, and their association with testicular failure is unknown. OBJECTIVE: We investigated executive function, brain activation, and pubertal development in adolescents with and without KS. METHODS: Forty-three adolescents with KS (mean age 12.3 ± 2.3 years) and 41 typically developing boys (mean age 11.9 ± 1.8 years) underwent pubertal evaluation, behavioral assessment, and completed functional magnetic resonance imaging (fMRI) as they performed an executive function task, the go/no-go task. Group differences in activation were examined. Associations among activation, executive function, and pubertal development measures were tested in secondary analyses. RESULTS: Boys with KS exhibited reduced executive function, as well as lower activation in brain regions subserving executive function, including the inferior frontal gyrus, anterior insula, dorsal anterior cingulate cortex, and caudate nucleus. Secondary analyses indicated that the magnitude of activation differences in boys with KS was associated with severity of pubertal developmental delay, as indexed by lower testosterone (t(36) = 2.285; P = .028) and lower testes volume (t(36) = 2.238; P = .031). Greater parent-reported attention difficulties were additionally associated with lower testicular volume (t(36) = -2.028; P = .050). CONCLUSION: These findings indicate a neural basis for executive dysfunction in KS and suggest alterations in pubertal development may contribute to increased severity of this cognitive weakness. Future studies that examine whether these patterns change with testosterone replacement therapy are warranted.


Subject(s)
Cognitive Dysfunction , Klinefelter Syndrome , Male , Adolescent , Humans , Child , Klinefelter Syndrome/genetics , Brain/pathology , Testosterone , Executive Function , Cognitive Dysfunction/etiology
11.
Transl Psychiatry ; 13(1): 245, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37407569

ABSTRACT

The RASopathies are genetic syndromes associated with pathogenic variants causing dysregulation of the Ras/mitogen-activated protein kinase (Ras-MAPK) pathway, essential for brain development, and increased risk for neurodevelopmental disorders. Yet, the effects of most pathogenic variants on the human brain are unknown. We examined: (1) How Ras-MAPK activating variants of PTPN11/SOS1 protein-coding genes affect brain anatomy. (2) The relationship between PTPN11 gene expression levels and brain anatomy, and (3) The relevance of subcortical anatomy to attention and memory skills affected in the RASopathies. We collected structural brain MRI and cognitive-behavioral data from 40 pre-pubertal children with Noonan syndrome (NS), caused by PTPN11 (n = 30) or SOS1 (n = 10) variants (age 8.53 ± 2.15, 25 females), and compared them to 40 age- and sex-matched typically developing controls (9.24 ± 1.62, 27 females). We identified widespread effects of NS on cortical and subcortical volumes and on determinants of cortical gray matter volume, surface area (SA), and cortical thickness (CT). In NS, we observed smaller volumes of bilateral striatum, precentral gyri, and primary visual area (d's < -0.8), and extensive effects on SA (d's > |0.8|) and CT (d's > |0.5|) relative to controls. Further, SA effects were associated with increasing PTPN11 gene expression, most prominently in the temporal lobe. Lastly, PTPN11 variants disrupted normative relationships between the striatum and inhibition functioning. We provide evidence for the effects of Ras-MAPK pathogenic variants on striatal and cortical anatomy as well as links between PTPN11 gene expression and cortical SA increases, and striatal volume and inhibition skills. These findings provide essential translational information on the Ras-MAPK pathway's effect on human brain development and function.


Subject(s)
Mitogen-Activated Protein Kinases , Noonan Syndrome , Child , Female , Humans , Noonan Syndrome/genetics , Brain/diagnostic imaging , Gray Matter , Gene Expression , Mutation
12.
Dev Med Child Neurol ; 65(11): 1520-1529, 2023 11.
Article in English | MEDLINE | ID: mdl-37130201

ABSTRACT

AIM: We investigated neuropsychiatric outcomes in children with Noonan syndrome and addressed limitations in previous research with a focus on prepubertal children, comparison to typically developing children, comprehensive neuropsychiatric evaluation, and controlling for overall cognitive abilities. METHOD: Forty-five children with Noonan syndrome (mean = 8 years 6 months, SD = 2 years 2 months; 29 females) and 40 typically developing children (mean = 8 years 9 months, SD = 2 years; 22 females) were evaluated with objective, parent-report, and psychiatric interview measures. RESULTS: Children with Noonan syndrome demonstrated elevated symptoms across attention-deficit/hyperactivity disorder (ADHD) (attention, hyperactivity, and inhibition), autism spectrum disorder (ASD) (maintaining social relationships, behavioral rigidity, and sensory sensitivity), and oppositional defiant disorder (ODD) (aggression) symptom clusters relative to typically developing children (all p < 0.05). Group differences in nearly all parent-report measures were significant after accounting for variations in intellectual functioning, suggesting that increased neurodevelopmental symptoms are not simply driven by overall intelligence. Twenty out of 42 children with Noonan syndrome met criteria for ADHD, eight out of 42 for ODD, and 11 out of 43 demonstrated clinically significant symptoms seen in children with ASD. INTERPRETATION: Children with Noonan syndrome are at increased risk for a range of ADHD, ASD, and ODD associated symptoms. A dimensional approach reveals significant ASD symptoms in Noonan syndrome that do not emerge when using the currently accepted categorical diagnostic approach. WHAT THIS PAPER ADDS: Neuropsychiatric disorders occur in more than half of children with Noonan syndrome. Children with Noonan syndrome demonstrate highly variable neurodevelopmental symptom profiles. Children with Noonan syndrome display variable impairments in attention, hyperactivity, and inhibition. Specific social concerns include behavioral rigidity, transitions, and difficulties maintaining social relationships. Children with Noonan syndrome display variably elevated levels of aggression and emotional dysregulation.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Noonan Syndrome , Female , Humans , Child , Noonan Syndrome/complications , Noonan Syndrome/genetics , Autism Spectrum Disorder/psychology , Attention Deficit Disorder with Hyperactivity/psychology , Attention , Phenotype
13.
Dev Psychopathol ; : 1-12, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37185087

ABSTRACT

Children with fragile X syndrome (FXS) often avoid eye contact, a behavior that is potentially related to hyperarousal. Prior studies, however, have focused on between-person associations rather than coupling of within-person changes in gaze behaviors and arousal. In addition, there is debate about whether prompts to maintain eye contact are beneficial for individuals with FXS. In a study of young females (ages 6-16), we used eye tracking to assess gaze behavior and pupil dilation during social interactions in a group with FXS (n = 32) and a developmentally similar comparison group (n = 23). Participants engaged in semi-structured conversations with a female examiner during blocks with and without verbal prompts to maintain eye contact. We identified a social-behavioral and psychophysiological profile that is specific to females with FXS; this group exhibited lower mean levels of eye contact, significantly increased mean pupil dilation during conversations that included prompts to maintain eye contact, and showed stronger positive coupling between eye contact and pupil dilation. Our findings strengthen support for the perspective that gaze aversion in FXS reflects negative reinforcement of social avoidance behavior. We also found that behavioral skills training may improve eye contact, but maintaining eye contact appears to be physiologically taxing for females with FXS.

14.
Hum Brain Mapp ; 44(10): 4028-4039, 2023 07.
Article in English | MEDLINE | ID: mdl-37126641

ABSTRACT

Turner syndrome (TS) is a common sex chromosome aneuploidy in females associated with various physical, cognitive, and socio-emotional phenotypes. However, few studies have examined TS-associated alterations in the development of cortical gray matter volume and the two components that comprise this measure-surface area and thickness. Moreover, the longitudinal direct (i.e., genetic) and indirect (i.e., hormonal) effects of X-monosomy on the brain are unclear. Brain structure was assessed in 61 girls with TS (11.3 ± 2.8 years) and 55 typically developing girls (10.8 ± 2.3 years) for up to 4 timepoints. Surface-based analyses of cortical gray matter volume, thickness, and surface area were conducted to examine the direct effects of X-monosomy present before pubertal onset and indirect hormonal effects of estrogen deficiency/X-monosomy emerging after pubertal onset. Longitudinal analyses revealed that, whereas typically developing girls exhibited normative declines in gray matter structure during adolescence, this pattern was reduced or inverted in TS. Further, girls with TS demonstrated smaller total surface area and larger average cortical thickness overall. Regionally, the TS group exhibited decreased volume and surface area in the pericalcarine, postcentral, and parietal regions relative to typically developing girls, as well as larger volume in the caudate, amygdala, and temporal lobe regions and increased thickness in parietal and temporal regions. Surface area alterations were predominant by age 8, while maturational differences in thickness emerged by age 10 or later. Taken together, these results suggest the involvement of both direct and indirect effects of X-chromosome haploinsufficiency on brain development in TS.


Subject(s)
Turner Syndrome , Humans , Female , Turner Syndrome/diagnostic imaging , Turner Syndrome/psychology , Magnetic Resonance Imaging , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Monosomy
15.
Biol Psychiatry ; 94(10): 814-822, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37004849

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is an X chromosome-linked genetic disorder characterized by increased risk for behavioral, social, and neurocognitive deficits. Because males express a more severe phenotype than females, research has focused largely on identifying neural abnormalities in all-male or both-sex populations with FXS. Therefore, very little is known about the neural alterations that contribute to cognitive behavioral symptoms in females with FXS. This cross-sectional study aimed to elucidate the large-scale resting-state brain networks associated with the multidomain cognitive behavioral phenotype in girls with FXS. METHODS: We recruited 38 girls with full-mutation FXS (11.58 ± 3.15 years) and 32 girls without FXS (11.66 ± 2.27 years). Both groups were matched on age, verbal IQ, and multidomain cognitive behavioral symptoms. Resting-state functional magnetic resonance imaging data were collected. RESULTS: Compared with the control group, girls with FXS showed significantly greater resting-state functional connectivity of the default mode network, lower nodal strength at the right middle temporal gyrus, stronger nodal strength at the left caudate, and higher global efficiency of the default mode network. These aberrant brain network characteristics map directly onto the cognitive behavioral symptoms commonly observed in girls with FXS. An exploratory analysis suggested that brain network patterns at a prior time point (time 1) were predictive of the longitudinal development of participants' multidomain cognitive behavioral symptoms. CONCLUSIONS: These findings represent the first examination of large-scale brain network alterations in a large sample of girls with FXS, expanding our knowledge of potential neural mechanisms underlying the development of cognitive behavioral symptoms in girls with FXS.


Subject(s)
Fragile X Syndrome , Female , Humans , Male , Fragile X Syndrome/complications , Cross-Sectional Studies , Brain , Behavioral Symptoms , Cognition , Magnetic Resonance Imaging
16.
Med Sci Sports Exerc ; 55(8): 1445-1455, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36897828

ABSTRACT

INTRODUCTION: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder for which behavioral treatments such as exercise are recommended as part of a multidisciplinary treatment program. Exercise improves executive function in individuals with ADHD, but limited information exists regarding the mechanisms involved in the response. We examined task-evoked brain responses during exercise and seated rest in 38 adolescents ( n = 15 ADHD; age, 13.6 ± 1.9; male, 73.3%; n = 23 typically developing (TD; age, 13.3 ± 2.1; male, 56.5%)). METHODS: Participants completed a working memory and inhibitory task while cycling at a moderate intensity for 25 min (i.e., exercise condition) and while seated on the bike without pedaling (i.e., control condition). Conditions were randomized and counterbalanced. Functional near-infrared spectroscopy measured relative changes in oxygenated hemoglobin concentration in 16 brain regions of interest. Brain activity for each cognitive task and condition was examined using linear mixed-effects models with a false discovery rate (FDR) correction. RESULTS: The ADHD group had slower response speeds for all tasks and lower response accuracy in the working memory task during exercise compared with the TD group ( P < 0.05). For the inhibitory task, the ADHD group had lower brain activity in the inferior/superior parietal gyrus during exercise compared with the control condition, whereas the opposite was true for TD (FDR corrected , P < 0.05). For the working memory task, higher brain activity during exercise was observed, regardless of group, in the middle and inferior frontal gyrus and the temporoparietal junction (FDR corrected , P < 0.05). CONCLUSIONS: Dual-task performance is challenging for adolescents with ADHD, and exercise may modulate neuronal resources in regions such as the temporoparietal junction and frontal areas known to be hypoactive in this population. Future research should examine how these relationships change over time.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adolescent , Child , Humans , Male , Brain , Cognition , Exercise , Magnetic Resonance Imaging , Memory, Short-Term/physiology
17.
J Neurosci ; 43(14): 2568-2578, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36868852

ABSTRACT

A growing number of social interactions are taking place virtually on videoconferencing platforms. Here, we explore potential effects of virtual interactions on observed behavior, subjective experience, and neural "single-brain" and "interbrain" activity via functional near-infrared spectroscopy neuroimaging. We scanned a total of 36 human dyads (72 participants, 36 males, 36 females) who engaged in three naturalistic tasks (i.e., problem-solving, creative-innovation, socio-emotional task) in either an in-person or virtual (Zoom) condition. We also coded cooperative behavior from audio recordings. We observed reduced conversational turn-taking behavior during the virtual condition. Given that conversational turn-taking was associated with other metrics of positive social interaction (e.g., subjective cooperation and task performance), this measure may be an indicator of prosocial interaction. In addition, we observed altered patterns of averaged and dynamic interbrain coherence in virtual interactions. Interbrain coherence patterns that were characteristic of the virtual condition were associated with reduced conversational turn-taking. These insights can inform the design and engineering of the next generation of videoconferencing technology.SIGNIFICANCE STATEMENT Videoconferencing has become an integral part of our lives. Whether this technology impacts behavior and neurobiology is not well understood. We explored potential effects of virtual interaction on social behavior, brain activity, and interbrain coupling. We found that virtual interactions were characterized by patterns of interbrain coupling that were negatively implicated in cooperation. Our findings are consistent with the perspective that videoconferencing technology adversely affects individuals and dyads during social interaction. As virtual interactions become even more necessary, improving the design of videoconferencing technology will be crucial for supporting effective communication.


Subject(s)
Interpersonal Relations , Social Behavior , Male , Female , Humans , Brain , Cooperative Behavior , Brain Mapping/methods , Communication
18.
Cereb Cortex ; 33(11): 7211-7220, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36848244

ABSTRACT

Expressing appreciation is essential for establishing interpersonal closeness, but virtual interactions are increasingly common and create social distance. Little is known about the neural and inter-brain correlates of expressing appreciation and the potential effects of virtual videoconferencing on this kind of interaction. Here, we assess inter-brain coherence with functional near-infrared spectroscopy while dyads expressed appreciation to one another. We scanned 36 dyads (72 participants) who interacted in either an in-person or virtual (Zoom®) condition. Participants reported on their subjective experience of interpersonal closeness. As predicted, expressing appreciation increased interpersonal closeness between dyad partners. Relative to 3 other cooperation tasks (i.e. problem-solving task, creative-innovation task, socio-emotional task), we observed increased inter-brain coherence in socio-cognitive areas of the cortex (anterior frontopolar area, inferior frontal gyrus, premotor cortex, middle temporal gyrus, supramarginal gyrus, and visual association cortex) during the appreciation task. Increased inter-brain coherence in socio-cognitive areas during the appreciation task was associated with increased interpersonal closeness. These findings support the perspective that expressing appreciation, both in-person and virtually, increases subjective and neural metrics of interpersonal closeness.


Subject(s)
Brain , Motor Cortex , Humans , Brain/diagnostic imaging , Interpersonal Relations , Cooperative Behavior , Spectroscopy, Near-Infrared , Brain Mapping/methods
19.
Neurophotonics ; 10(1): 013505, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36777700

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) is an optical imaging technique for assessing human brain activity by noninvasively measuring the fluctuation of cerebral oxygenated- and deoxygenated-hemoglobin concentrations associated with neuronal activity. Owing to its superior mobility, low cost, and good tolerance for motion, the past few decades have witnessed a rapid increase in the research and clinical use of fNIRS in a variety of psychiatric disorders. In this perspective article, we first briefly summarize the state-of-the-art concerning fNIRS research in psychiatry. In particular, we highlight the diverse applications of fNIRS in psychiatric research, the advanced development of fNIRS instruments, and novel fNIRS study designs for exploring brain activity associated with psychiatric disorders. We then discuss some of the open challenges and share our perspectives on the future of fNIRS in psychiatric research and clinical practice. We conclude that fNIRS holds promise for becoming a useful tool in clinical psychiatric settings with respect to developing closed-loop systems and improving individualized treatments and diagnostics.

20.
Horm Behav ; 149: 105300, 2023 03.
Article in English | MEDLINE | ID: mdl-36640638

ABSTRACT

Turner syndrome (TS), a common neurogenetic disorder caused by complete or partial absence of an X chromosome in females, is characterized by distinct physical, cognitive, and social-emotional features. Girls with TS typically display average overall intellectual functioning with relative strength in verbal abilities and weaknesses in visuospatial processing, executive function (EF), and social cognition. This study was designed to better understand longitudinal trajectories of cognitive and social-emotional domains commonly affected in TS. Participants included 57 girls with monosomic 45,X TS and 55 age- and verbal-IQ matched girls who completed behavioral, child-report, and parent-report measures across four timepoints. Group differences in visuospatial processing, EF, social cognition, and anxiety were assessed longitudinally. Potential effects of estrogen replacement therapy (ERT) were assessed cross-sectionally on an exploratory basis. The TS group showed poorer performance on measures of visuospatial processing, EF, and social cognition, but not anxiety, compared to controls throughout childhood and adolescence. There were no significant group differences in the trajectory of skill development over time. Exploratory analyses within the TS group revealed that girls who were receiving ERT showed better performance on measures of overall IQ, expressive vocabulary, and visuospatial processing compared to those not receiving ERT. Consistent with existing literature, weaknesses in visuospatial processing, EF, and social competence among girls with TS persisted throughout childhood and adolescence. Exploratory analyses suggest that ERT may help improve some aspects of cognitive function in TS, although other pre-existing, nonhormonal differences between the two TS subgroups may alternatively explain these findings, given our study design. Future studies are needed to examine potential impacts of ERT on cognitive and social-emotional development in TS.


Subject(s)
Social Cognition , Turner Syndrome , Female , Humans , Adolescent , Child , Social Skills , Turner Syndrome/genetics , Turner Syndrome/psychology , Cognition , Executive Function
SELECTION OF CITATIONS
SEARCH DETAIL