Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 417
Filter
1.
ACS Nano ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109520

ABSTRACT

Malignant pleural effusions (MPEs) are hard to treat, and their onset usually signals terminal cancer. Immunotherapies hold promise but must overcome the immunosuppressive MPE microenvironment. Herein, we treat MPEs via synergistically combining two emerging cancer therapy modalities: enzyme-dynamic therapy (EDT) and metalloimmunotherapy. To do so, a nanoplatform termed "A-R-SOME" was developed which comprises MPE-targeted M1 type extracellular vesicles (EVs) loaded with (1) a manganese-based superoxide dismutase (SOD) enzyme, (2) stimulator of interferon genes (STING) agonist diABZI-2, and (3) signal transducer and an activator of transcription 3 (STAT3) small interfering RNA. Endogenous reactive oxygen species within tumors induced immunogenic cell death by EDT, along with STING activation by both Mn and diABZI-2, and suppression of the STAT3 pathway. Systemically administered A-R-SOME alleviated the MPE immunosuppressive microenvironment, triggered antitumor systemic immunity, and long-term immune memory, leading to the complete eradication of MPE and pleural tumors with 100% survival rate in an aggressive murine model. A-R-SOME-induced immune effects were also observed in human patient-derived MPE, pointing toward the translation potential of A-R-SOME as an experimental malignancy treatment.

2.
Cardiovasc Toxicol ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39068603

ABSTRACT

Quercetin (QUE) has been found to inhibit the progression of sepsis-related diseases, including sepsis-induced cardiomyopathy (SIC). More information about the role and mechanism of QUE in SIC progression deserves further exploration. Human cardiomyocytes (AC16) were induced with LPS to mimic SIC cell models. Cell proliferation and apoptosis were determined using CCK8 assay, EdU assay, and flow cytometry. Cell inflammation and ferroptosis were evaluated by detecting IL-1ß, TNF-α, Fe2+, ROS, GSH, and GPX4 levels. 5-lipoxygenase (ALOX5) expression was examined by quantitative real-time PCR and western blot. LPS treatment reduced AC16 cell proliferation, while enhanced apoptosis, inflammation, and ferroptosis. QUE repressed LPS-induced AC16 cell apoptosis, inflammation, and ferroptosis. ALOX5 was upregulated in SIC patients, and its expression was reduced by QUE. ALOX5 knockdown restrained LPS-induced apoptosis, inflammation, and ferroptosis in AC16 cells. The inhibitory effect of QUE on LPS-induced myocardial injury could be reversed by ALOX5 overexpression. QUE promoted the activity of PI3K/AKT pathway by reducing ALOX5 expression. QUE could alleviate LPS-induced myocardial injury by regulating ALOX5/PI3K/AKT pathway, suggesting that QUE might be used for treating SIC.

3.
Biomedicines ; 12(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39061997

ABSTRACT

Junctional adhesion molecule-A (JAM-A), also known as F11 receptor (F11R), is a transmembrane glycoprotein that is involved in various biological processes, including cancer initiation and progression. However, the functional characteristics and significance of JAM-A in pan-cancer remain unexplored. In this study, we used multiple databases to gain a comprehensive understanding of JAM-A in human cancers. JAM-A was widely expressed in various tissues, mainly located on the microtubules and cell junctions. Aberrant expression of JAM-A was detected in multiple cancers at both mRNA and protein levels, which can be correlated with poorer prognosis and may be attributed to genetic alterations and down-regulated DNA methylation. JAM-A expression was also associated with immune infiltration and may affect immunotherapy responses in several cancers. Functional enrichment analysis indicated that JAM-A participated in tight junction and cancer-related pathways. In vitro experiments verified that JAM-A knockdown suppressed the proliferation and migration abilities of breast cancer cells and liver cancer cells. Overall, our study suggests that JAM-A is a pan-cancer regulator and a potential biomarker for predicting prognosis and immune-therapeutic responses for different tumors.

4.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2223-2234, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044586

ABSTRACT

Heterotypic cell-in-cell (heCIC) structures represent a unique intercellular interaction where tumor cells internalize immune cells to enhance the killing efficiency of immune cells. However, the mechanism of heCIC structure formation remains to be fully elucidated. In this study, we explored the role of epithelial membrane protein 3 (EMP3), a PMP-22/EMP/MP20 protein family member highly expressed in the patients with hepatocellular carcinoma and poor prognosis, in the formation of the heCIC structure formed by natural killer cells and hepatocellular carcinoma cells. The analysis of monoclonal hepatocellular carcinoma cell lines revealed that EMP3 presented low expression in the cells with high capability to form heCIC structure and high expression in those with low capability. Knocking down the expression of EMP3 by gene editing promoted the formation of heCIC structures, while overexpression of EMP3 significantly inhibited this process. Additionally, the expression of factors involved in the heCIC structure formation suggested that EMP3 inhibited the formation of heCIC structures by modulating the adhesion ability and cytoskeleton of tumor cells. The findings lay a foundation for enhancing the heCIC-mediated tumor immunotherapy by targeting EMP3.


Subject(s)
Carcinoma, Hepatocellular , Cell Adhesion , Killer Cells, Natural , Liver Neoplasms , Membrane Glycoproteins , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Cell Communication/immunology , Killer Cells, Natural/immunology , Cell Line, Tumor , Cell Adhesion/immunology , Cytoskeleton/immunology , Immunotherapy , Humans , Gene Knockdown Techniques , Gene Editing
5.
Mol Cancer Res ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967522

ABSTRACT

Heterogeneous nuclear ribonucleoprotein AB (hnRNPAB) is considered a cancer-promoting heterogeneous nuclear ribonucleoprotein in many cancers, but its function in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. HnRNPAB was highly expressed in PDAC tissues compared to normal pancreatic tissues, and high expression of hnRNPAB was associated with poor overall survival and recurrence-free survival in PDAC patients. HnRNPAB promotes migration and invasion of PDAC cells in vitro. In xenograft tumor mouse models, hnRNPAB deprivation significantly attenuated liver metastasis. HnRNPAB mRNA and protein levels are positively associated with MYC in PDAC cells. Mechanistically, hnRNPAB bound to MYC mRNA and prolonged its half-life of MYC mRNA. HnRNPAB induced PDAC cells to secret CXCL8 via MYC, which promoted neutrophils recruitment and facilitated tumor cells entrancing into the hepatic parenchyma. These findings point to a novel regulatory mechanism via which hnRNPAB promotes PDAC metastasis. Implications: Hnrnpab participates in the post-transcriptional regulation of the oncogene MYC by binding and stabilizing MYC mRNA, thereby promoting liver metastasis in PDAC.

6.
Sci Rep ; 14(1): 15617, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971843

ABSTRACT

Traditional decomposition integration models decompose the original sequence into subsequences, which are then proportionally divided into training and testing periods for modeling. Decomposition may cause data aliasing, then the decomposed training period may contain part of the test period data. A more effective method of sample construction is sought in order to accurately validate the model prediction accuracy. Semi-stepwise decomposition (SSD), full stepwise decomposition (FSD), single model semi-stepwise decomposition (SMSSD), and single model full stepwise decomposition (SMFSD) techniques were used to create the samples. This study integrates Variational Mode Decomposition (VMD), African Vulture Optimization Algorithm (AVOA), and Least Squares Support Vector Machine (LSSVM) to construct a coupled rainfall prediction model. The influence of different VMD parameters α is examined, and the most suitable stepwise decomposition machine learning coupled model algorithm for various stations in the North China Plain is selected. The results reveal that SMFSD is relatively the most suitable tool for monthly precipitation forecasting in the North China Plain. Among the predictions for the five stations, the best overall performance is observed at Huairou Station (RMSE of 18.37 mm, NSE of 0.86, MRE of 107.2%) and Jingxian Station (RMSE of 24.74 mm, NSE of 0.86, MRE of 51.71%), while Hekou Station exhibits the poorest performance (RMSE of 25.11 mm, NSE of 0.75, MRE of 173.75%).

7.
Heliyon ; 10(12): e33219, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022007

ABSTRACT

Background: Breast cancer is the most widespread malignant tumor worldwide. Single-cell sequencing technology offers novel insights and methods to understand the onset, progression, and treatment of tumors. Nevertheless, there is currently an absence of a thorough and unbiased report on the comprehensive research status of single-cell sequencing in breast cancer. This study seeks to summarize and quantify the dynamics and trends of research on breast cancer single-cell sequencing by bibliometric analysis. Methods: Research articles and reviews related to breast cancer single-cell sequencing were selected from the WoSCC database. Visualization of data regarding countries, institutions, authors, references, and keywords was performed by CiteSpace and VOSviewer software. Results: 583 articles and reviews were analyzed in this study. The quantity of publications related to breast cancer single-cell sequencing has been increasing annually. These studies originate from 302 institutions in 46 countries, with YMAX S WICHA producing the most publications and WANG Y being the most cited author. Nature Communications is the most researched journal, while Nature holds the highest number of citations. These journals predominantly cover topics in the molecular/biological/immunological fields. Moreover, an analysis of reference and keyword bursts revealed that current research trends in this area are primarily centered on "clonal evolution," "tumor microenvironment," and "immunotherapy." Conclusion: Breast cancer single-cell sequencing is a rapidly growing area of scientific interest. Future research requires more frequent and in-depth collaborations among countries, institutions, and authors. Furthermore, "clonal evolution," "tumor microenvironment," and "immunotherapy" are likely to become major focal points in upcoming research on breast cancer single-cell sequencing.

8.
Heliyon ; 10(12): e33061, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988542

ABSTRACT

Transcatheter aortic valve implantation (TAVI) was originally devised as a treatment for patients with aortic stenosis (AS). It has since emerged as a beneficial alternative to surgical aortic valve replacement (SAVR), extending its reach to a broader array of patients. Our objective was to illustrate the developmental trends and focus areas in TAVI research. We sourced a total of 11,480 research papers on TAVI, published between 1994 and 2022, from the Web of Science Core Collection (WoSCC) database. We conducted a bibliometric analysis of these publications, generating cooperation maps, performing co-citation analysis of journals and references, and carrying out a cluster analysis of keywords. Our findings indicate that TAVI research grapples with numerous clinical challenges. We created knowledge maps that highlight contributing countries/institutions, authors, journals with high publication and citation rates, and notable references in this domain. North America and Europe have been at the forefront of research within the TAVI field. The institutions and authors from these regions exert significant influence in this area of study. Beginning in 2009, China has progressively expanded its research on TAVI over the past two decades. We anticipate that future research will increasingly focus on three key areas: implementation scope, lifelong management, outcomes and predicting the risk of TAVI. Research on TAVI is flourishing. Cooperation among different countries and institutions in this field must be strengthened in the future, especially for developing counties.

9.
Biophys J ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39021073

ABSTRACT

Signaling through the Ras-MAPK pathway can exhibit switch-like activation, which has been attributed to the underlying positive feedback and bimodality in the activation of RasGDP to RasGTP by SOS. SOS contains both catalytic and allosteric Ras binding sites, and a common assumption is that allosteric activation selectively by RasGTP provides the mechanism of positive feedback. However, recent single-molecule studies have revealed that SOS catalytic rates are independent of the nucleotide state of Ras in the allosteric binding site, raising doubt about this as a positive feedback mechanism. Here, we perform detailed kinetic analyses of receptor-mediated recruitment of full-length SOS to the membrane while simultaneously monitoring its catalytic activation of Ras. These results, along with kinetic modeling, expose the autoinhibition release step in SOS, rather than either recruitment or allosteric activation, as the underlying mechanism giving rise to positive feedback in Ras activation.

10.
BMC Med Inform Decis Mak ; 24(1): 158, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840126

ABSTRACT

BACKGROUND: Allogeneic Blood transfusion is common in hip surgery but is associated with increased morbidity. Accurate prediction of transfusion risk is necessary for minimizing blood product waste and preoperative decision-making. The study aimed to develop machine learning models for predicting perioperative blood transfusion in hip surgery and identify significant risk factors. METHODS: Data of patients undergoing hip surgery between January 2013 and October 2021 in the Peking Union Medical College Hospital were collected to train and test predictive models. The primary outcome was perioperative red blood cell (RBC) transfusion within 72 h of surgery. Fourteen machine learning algorithms were established to predict blood transfusion risk incorporating patient demographic characteristics, preoperative laboratory tests, and surgical information. Discrimination, calibration, and decision curve analysis were used to evaluate machine learning models. SHapley Additive exPlanations (SHAP) was performed to interpret models. RESULTS: In this study, 2431 hip surgeries were included. The Ridge Classifier performed the best with an AUC = 0.85 (95% CI, 0.81 to 0.88) and a Brier score = 0.21. Patient-related risk factors included lower preoperative hemoglobin, American Society of Anesthesiologists (ASA) Physical Status > 2, anemia, lower preoperative fibrinogen, and lower preoperative albumin. Surgery-related risk factors included longer operation time, total hip arthroplasty, and autotransfusion. CONCLUSIONS: The machine learning model developed in this study achieved high predictive performance using available variables for perioperative blood transfusion in hip surgery. The predictors identified could be helpful for risk stratification, preoperative optimization, and outcomes improvement.


Subject(s)
Blood Transfusion , Machine Learning , Humans , Male , Female , Middle Aged , Aged , Adult , Arthroplasty, Replacement, Hip , Risk Factors , Risk Assessment
11.
Polymers (Basel) ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891444

ABSTRACT

Plasma-initiated polymerization (PIP) is generally attributed to a radical process due to its inhibiting property. However, its unique polymerization behaviors like long-lived radical and solvent effect do not comply well with the traditional radical mechanism. Herein, the PIP of methyl methacrylate (MMA) was conducted in a high-voltage DC electric field to investigate the charged nature of its radicals. Consequently, the polymerization presented a preferential distribution of polymers at the anode but not the cathode, revealing the negatively charged nature of the growing radicals. An acceleration phenomenon, accompanied by the growth in molecular weights and the reduction in molecular weight distributions (Ð), was observed at the voltages above 16 kV, suggesting the dissociation of ion pairs of growing radicals. The PIP yielded PMMA with analogous chemical and steric structures to those of PMMA from traditional radical initiation, whether in the presence or absence of the external electric field. This work offers new insights into the PIP of vinyl monomers, wherein a one-electron transfer reaction is inferred to be involved in the monomer activation.

12.
Sci Adv ; 10(25): eadi0707, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905351

ABSTRACT

Ras is a small GTPase that is central to important functional decisions in diverse cell types. An important aspect of Ras signaling is its ability to exhibit bimodal or switch-like activity. We describe the total reconstitution of a receptor-mediated Ras activation-deactivation reaction catalyzed by SOS and p120-RasGAP on supported lipid membrane microarrays. The results reveal a bimodal Ras activation response, which is not a result of deterministic bistability but is rather driven by the distinct processivity of the Ras activator, SOS. Furthermore, the bimodal response is controlled by the condensation state of the scaffold protein, LAT, to which SOS is recruited. Processivity-driven bimodality leads to stochastic bursts of Ras activation even under strongly deactivating conditions. This behavior contrasts deterministic bistability and may be more resistant to pharmacological inhibition.


Subject(s)
Signal Transduction , ras Proteins , ras Proteins/metabolism , Son of Sevenless Proteins/metabolism , Humans
13.
Comput Biol Med ; 176: 108537, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744008

ABSTRACT

BACKGROUND: Anti-PD-1/PD-L1 treatment has achieved durable responses in TNBC patients, whereas a fraction of them showed non-sensitivity to the treatment and the mechanism is still unclear. METHODS: Pre- and post-treatment plasma samples from triple negative breast cancer (TNBC) patients treated with immunotherapy were measured by tandem mass tag (TMT) mass spectrometry. Public proteome data of lung cancer and melanoma treated with immunotherapy were employed to validate the findings. Blood and tissue single-cell RNA sequencing (scRNA-seq) data of TNBC patients treated with or without immunotherapy were analyzed to identify the derivations of plasma proteins. RNA-seq data from IMvigor210 and other cancer types were used to validate plasma proteins in predicting response to immunotherapy. RESULTS: A random forest model constructed by FAP, LRG1, LBP and COMP could well predict the response to immunotherapy. The activation of complement cascade was observed in responders, whereas FAP and COMP showed a higher abundance in non-responders and negative correlated with the activation of complements. scRNA-seq and bulk RNA-seq analysis suggested that FAP, COMP and complements were derived from fibroblasts of tumor tissues. CONCLUSIONS: We constructe an effective plasma proteomic model in predicting response to immunotherapy, and find that FAP+ and COMP+ fibroblasts are potential targets for reversing immunotherapy resistance.


Subject(s)
Immunotherapy , Proteomics , Single-Cell Analysis , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Female , Immunotherapy/methods , Single-Cell Analysis/methods , Proteomics/methods , B7-H1 Antigen/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Transcriptome , Immune Checkpoint Inhibitors/therapeutic use , Gene Expression Profiling , Proteome
14.
Nano Lett ; 24(19): 5894-5903, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709593

ABSTRACT

The combination of radiotherapy (RT) and immunotherapy shows promise in improving the clinical treatment of solid tumors; however, it faces challenges of low response rates and systemic toxicity. Herein, an implantable alginate/collagen hydrogel encapsulating C-C motif ligand 21 (CCL21)-expressing dendritic cells (CCL21-DCs@gel) was developed to potentiate the systemic antitumor effects of RT. The hydrogel functioned as a suitable reservoir for in vivo culture and proliferation of CCL21-DCs, thereby enabling sustained CCL21 release. The local CCL21 gradient induced by CCL21-DCs@gel significantly enhanced the efficacy of RT in suppressing primary tumor growth and inhibiting distant metastasis across several mouse models. Furthermore, the combination of RT with CCL21-DCs@gel provided complete prophylactic protection to mice. Mechanistic investigations revealed that CCL21-DCs@gel potentiated RT by promoting tumor lymphangiogenesis and attracting immune cell infiltration into the tumor. Collectively, these results suggest that CCL21-DCs@gel is a promising adjunct to RT for effectively eradicating tumors and preventing tumor recurrence.


Subject(s)
Chemokine CCL21 , Hydrogels , Animals , Humans , Mice , Alginates/chemistry , Cell Line, Tumor , Collagen/chemistry , Dendritic Cells/drug effects , Dendritic Cells/immunology , Hydrogels/chemistry , Immunotherapy/methods , Neoplasms/radiotherapy , Neoplasms/pathology , Neoplasms/immunology
15.
Forensic Sci Res ; 9(2): owae027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774862

ABSTRACT

In paternity testing, when there are Mendelian errors in the alleles between the child and the parents, a slippage mutation, or silent allele may not fully explain the phenomenon. Sometimes, it is attributed to chromosomal abnormalities, such as uniparental disomy (UPD). Here, we present the investigation of two cases of suspected UPD in paternity testing based on short tandem repeat (STR) detection (capillary electrophoresis platform). Case 1 involves a trio, where all genotypes detected on chromosome 6 in the child are homozygous and found in the father. Case 2 is a duo (mother and child), where all genotypes on chromosome 3 in the child are homozygous and not always found in the mother. At the same time, Mendelian error alleles were also observed at specific loci in these two chromosomes. Furthermore, we used the MGIEasy Signature Identification Library Prep Kit for sequencing on the massively parallel sequencing platform, which included common autosomal, X and Y chromosomes, and mitochondrial genetic markers used in forensic practice. The results showed that the genotypes of shared STRs on the two platforms were consistent, and STRs and single nucleotide polymorphisms (SNPs) on these two chromosomes were homozygous. All other genetic markers followed the laws of inheritance. A comprehensive analysis supported the parent-child relationship between the child and the alleged parent, and the observed genetic anomalies can be attributed to UPD. UPD occurrences are rare, and ignoring its presence can lead to erroneous exclusions in paternity testing, particularly when multiple loci on a chromosome exhibit homozygosity.

16.
Biol Direct ; 19(1): 39, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755705

ABSTRACT

BACKGROUND: The presence of mesenchymal stem cells has been confirmed in some solid tumors where they serve as important components of the tumor microenvironment; however, their role in cancer has not been fully elucidated. The aim of this study was to investigate the functions of mesenchymal stem cells isolated from tumor tissues of patients with non-small cell lung cancer. RESULTS: Human lung cancer-derived mesenchymal stem cells displayed the typical morphology and immunophenotype of mesenchymal stem cells; they were nontumorigenic and capable of undergoing multipotent differentiation. These isolated cells remarkably enhanced tumor growth when incorporated into systems alongside tumor cells in vivo. Importantly, in the presence of mesenchymal stem cells, the ability of peripheral blood mononuclear cell-derived natural killer and activated T cells to mediate tumor cell destruction was significantly compromised. CONCLUSION: Collectively, these data support the notion that human lung cancer-derived mesenchymal stem cells protect tumor cells from immune-mediated destruction by inhibiting the antitumor activities of natural killer and T cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Killer Cells, Natural , Lung Neoplasms , Mesenchymal Stem Cells , Humans , Lung Neoplasms/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Killer Cells, Natural/immunology , Animals , Mice , T-Lymphocytes/immunology , Cell Differentiation , Tumor Microenvironment , Cell Line, Tumor
17.
Adv Sci (Weinh) ; 11(21): e2400888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38638003

ABSTRACT

Circulating tumor cells (CTCs) shed from primary tumors must overcome the cytotoxicity of immune cells, particularly natural killer (NK) cells, to cause metastasis. The tumor microenvironment (TME) protects tumor cells from the cytotoxicity of immune cells, which is partially executed by cancer-associated mesenchymal stromal cells (MSCs). However, the mechanisms by which MSCs influence the NK resistance of CTCs remain poorly understood. This study demonstrates that MSCs enhance the NK resistance of cancer cells in a gap junction-dependent manner, thereby promoting the survival and metastatic seeding of CTCs in immunocompromised mice. Tumor cells crosstalk with MSCs through an intercellular cGAS-cGAMP-STING signaling loop, leading to increased production of interferon-ß (IFNß) by MSCs. IFNß reversely enhances the type I IFN (IFN-I) signaling in tumor cells and hence the expression of human leukocyte antigen class I (HLA-I) on the cell surface, protecting the tumor cells from NK cytotoxicity. Disruption of this loop reverses NK sensitivity in tumor cells and decreases tumor metastasis. Moreover, there are positive correlations between IFN-I signaling, HLA-I expression, and NK tolerance in human tumor samples. Thus, the NK-resistant signaling loop between tumor cells and MSCs may serve as a novel therapeutic target.


Subject(s)
Interferon-beta , Killer Cells, Natural , Mesenchymal Stem Cells , Neoplastic Cells, Circulating , Nucleotidyltransferases , Signal Transduction , Tumor Microenvironment , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Animals , Killer Cells, Natural/immunology , Mice , Interferon-beta/metabolism , Interferon-beta/immunology , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Humans , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/metabolism , Tumor Microenvironment/immunology , Membrane Proteins/metabolism , Disease Models, Animal , Cell Line, Tumor
18.
Cancer Lett ; 590: 216838, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38561039

ABSTRACT

FOXP3, a key identifier of Treg, has also been identified in tumor cells, which is referred to as cancer-FOXP3 (c-FOXP3). Human c-FOXP3 undergoes multiple alternative splicing events, generating several isoforms, like c-FOXP3FL and c-FOXP3Δ3. Previous research on c-FOXP3 often ignore its cellular source (immune or tumor cells) and isoform expression patterns, which may obscure our understanding of its clinical significance. Our immunohistochemistry investigations which conducted across 18 tumors using validated c-FOXP3 antibodies revealed distinct expression landscapes for c-FOXP3 and its variants, with the majority of tumors exhibited a predominantly expression of c-FOXP3Δ3. In pancreatic ductal adenocarcinoma (PDAC), we further discovered a potential link between nuclear c-FOXP3Δ3 in tumor cells and poor prognosis. Overexpression of c-FOXP3Δ3 in tumor cells was associated with metastasis. This work elucidates the expression pattern of c-FOXP3 in pan-cancer and indicates its potential as a prognostic biomarker in clinical settings, offering new perspectives for its clinical application.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Forkhead Transcription Factors , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/mortality , Prognosis , Male , Female , Alternative Splicing , Immunohistochemistry , Protein Isoforms , Middle Aged , Aged , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Gene Expression Regulation, Neoplastic
19.
ACS Appl Bio Mater ; 7(5): 3306-3315, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38634490

ABSTRACT

Photodynamic therapy (PDT) and ferroptosis show significant potential in tumor treatment. However, their therapeutic efficacy is often hindered by the oxygen-deficient tumor microenvironment and the challenges associated with efficient intracellular drug delivery into tumor cells. Toward this end, this work synthesized perfluorocarbon (PFC)-modified Pluronic F127 (PFC-F127), and then exploits it as a carrier for codelivery of photosensitizer Chlorin e6 (Ce6) and the ferroptosis promoter sorafenib (Sor), yielding an oxygen self-supplying nanoplatform denoted as Ce6-Sor@PFC-F127. The PFCs on the surface of the micelle play a crucial role in efficiently solubilizing and delivering oxygen as well as increasing the hydrophobicity of the micelle surface, giving rise to enhanced endocytosis by cancer cells. The incorporation of an oxygen-carrying moiety into the micelles enhances the therapeutic impact of PDT and ferroptosis, leading to amplified endocytosis and cytotoxicity of tumor cells. Hypotonic saline technology was developed to enhance the cargo encapsulation efficiency. Notably, in a murine tumor model, Ce6-Sor@PFC-F127 effectively inhibited tumor growth through the combined use of oxygen-enhanced PDT and ferroptosis. Taken together, this work underscores the promising potential of Ce6-Sor@PFC-F127 as a multifunctional therapeutic nanoplatform for the codelivery of multiple cargos such as oxygen, photosensitizers, and ferroptosis inducers.


Subject(s)
Antineoplastic Agents , Chlorophyllides , Drug Screening Assays, Antitumor , Ferroptosis , Fluorocarbons , Micelles , Oxygen , Photochemotherapy , Photosensitizing Agents , Ferroptosis/drug effects , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Animals , Mice , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Humans , Oxygen/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Materials Testing , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Sorafenib/chemistry , Sorafenib/pharmacology , Sorafenib/administration & dosage , Poloxamer/chemistry , Cell Line, Tumor , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Molecular Structure
20.
Biomed Pharmacother ; 174: 116545, 2024 May.
Article in English | MEDLINE | ID: mdl-38603884

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.


Subject(s)
Cardiovascular Diseases , Mitochondria , Stress, Mechanical , Humans , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Animals , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL