Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Carcinog ; 63(7): 1362-1377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38656551

ABSTRACT

Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Animals , Mice , Cell Line, Tumor , Cell Movement , Wnt Signaling Pathway , Prognosis , Carcinogenesis/genetics
2.
Biol Direct ; 19(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38163864

ABSTRACT

BACKGROUND: Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that participates in various biological and pathological processes. Dysregulated PGK1 has been observed in numerous malignancies. However, whether and how PGK1 affects non-small cell lung cancer (NSCLC) is not yet fully elucidated. METHODS: Herein, the non-metabolic function of PGK1 in NSCLC was explored by integrating bioinformatics analyses, cellular experiments, and nude mouse xenograft models. The upstream regulators and downstream targets of PGK1 were examined using multiple techniques such as RNA sequencing, a dual-luciferase reporter assay, Co-immunoprecipitation, and Western blotting. RESULTS: We confirmed that PGK1 was upregulated in NSCLC and this upregulation was associated with poor prognosis. Further in vitro and in vivo experiments demonstrated the promoting effects of PGK1 on NSCLC cell growth and metastasis. Additionally, we discovered that PGK1 interacted with and could be O-GlcNAcylated by OGT. The inhibition of PGK1 O-GlcNAcylation through OGT silencing or mutation at the T255 O-GlcNAcylation site could weaken PGK1-mediated NSCLC cell proliferation, colony formation, migration, and invasion. We also found that a low miR-24-3p level led to an increase in OGT expression. Additionally, PGK1 exerted its oncogenic properties by augmenting ERK phosphorylation and MCM4 expression. CONCLUSIONS: PGK1 acted as a crucial mediator in controlling NSCLC progression. The miR-24-3p/OGT axis was responsible for PGK1 O-GlcNAcylation, and ERK/MCM4 were the downstream effectors of PGK1. It appears that PGK1 might be an attractive therapeutic target for the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , Cell Proliferation/genetics , Up-Regulation , Cell Line, Tumor , Cell Movement/genetics , Phosphoglycerate Kinase/genetics , Phosphoglycerate Kinase/metabolism
3.
J Fish Dis ; 43(11): 1353-1361, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32851664

ABSTRACT

Visceral white nodules disease (VWND) caused by Pseudomonas plecoglossicida is a common disease in cage-farmed large yellow croaker (Larimichthys crocea) in China. VWND usually occurred at water temperature of 16-19℃, resulting in high mortality in farmed large yellow croaker. Now, P. plecoglossicida as its pathogen has been considered nonpathogenic at 7-12℃. During February 2019, an infectious disease outbreak was observed in cage-farmed large yellow croaker at a water temperature of 12℃ in Ningde, China. This disease is characterized by white granulomatous lesions in internal organs of the diseased fish, which was similar with the symptoms of the VWND in large yellow croaker. Then, we isolated a bacterial strain named PQLYC4 from visceral lesions of the diseased fish. The experimental infection studies demonstrated that the strain PQLYC4 was the pathogen of the disease, which was further identified as P. plecoglossicida by the analysis of morphology, 16s rRNA gene homology and average nucleotide identity based on the whole genome sequence. Our results revealed that P. plecoglossicida strain PQLYC4 could cause the outbreak of the VWND at 12℃, a water temperature lower than that reported previously, thus providing new knowledges of prevalence and prevention of the VWND in large yellow croaker.


Subject(s)
Fish Diseases/microbiology , Pseudomonas Infections/veterinary , Pseudomonas/pathogenicity , Temperature , Animals , Aquaculture , China , Disease Outbreaks , Genome, Bacterial , Perciformes , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas Infections/pathology , RNA, Ribosomal, 16S/genetics
4.
Dev Comp Immunol ; 105: 103576, 2020 04.
Article in English | MEDLINE | ID: mdl-31846686

ABSTRACT

Tumor necrosis factor-α (TNF-α) plays crucial roles in cell development, proliferation, apoptosis, inflammation, and immunity. TNF-α genes have been identified in various fish species, however, their biological functions remain to be further clarified. In this study, we identified a novel TNF-α homologue (LcTNF-α2) from large yellow croaker (Larimichthys crocea), which shares a low amino acid sequence identity to the previously reported large yellow croaker TNF-α (LcTNF-α1). The open reading frame of LcTNF-α2 is 714 nucleotides long, encoding a peptide of 237 amino acids (aa). The deduced LcTNF-α2 protein contains a 23-aa transmembrane region, a TACE restriction site at residues T71/L72, a TNF family signature (I108- F135), and two conserved cysteine residues (C39 and C179), as found in other known TNF-α sequences. Both LcTNF-α1 and LcTNF-α2 genes were constitutively expressed in all examined tissues and significantly up-regulated in the spleen and head kidney by Vibrio alginolyticus. Their transcripts were also detected in primary head kidney monocytes/macrophages (MO/Mϕs), lymphocytes (PKLs), granulocytes (PKGs), and large yellow croaker head kidney (LYCK) cell line and significantly increased in these cell types by inactivated Vibrio alginolyticus. Recombinant LcTNF-α1 and LcTNF-α2 proteins (rLcTNF-α1 and rLcTNF-α2) produced in Pichia pastoris not only significantly increased the production of reactive oxygen species (ROS), but also promoted the expression of proinflammatory cytokines (IL-1ß, IL-6,IL-8, and TNF-α1) in MO/Mϕs from large yellow croaker. Even more, after stimulation with rLcTNF-α1 and rLcTNF-α2, the production of nitrogen oxide (NO) and the expression of inducible NO synthase (iNOS) gene were significantly up-regulated. However, only rLcTNF-α1 remarkedly enhanced the phagocytosis of MO/Mϕs and increased the expression of TNF-α2 in MO/Mϕs. These results therefore indicated that LcTNF-α1 and LcTNF-α2 both play roles in promoting activation of head kidney MO/Mϕs.


Subject(s)
Fish Proteins/genetics , Macrophages/immunology , Monocytes/immunology , Perciformes/immunology , Tumor Necrosis Factor-alpha/genetics , Vibrio Infections/immunology , Vibrio alginolyticus/physiology , Animals , Cytokines/metabolism , Immunity, Innate , Macrophage Activation/genetics , Phylogeny , Sequence Alignment , Sequence Homology, Nucleic Acid , Transcriptome
5.
J Chromatogr Sci ; 41(9): 494-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14596787

ABSTRACT

A method is developed for the specific and sensitive determination of cethromycin concentrations in plasma, bronchoalveolar lavage (BAL), and alveolar cells (AC), using a high-performance liquid chromatographic-tandem mass spectrometry (MS) method. The mobile phase consists of 50% acetonitrile-0.05% acetic acid-5mM ammonium acetate; the column used is a C(8) reversed-phase stationary phase. The preparation of samples requires a solvent extraction step. The retention times for cethromycin and the internal standard are approximately 2.0 and 2.7 min, respectively, with a total run time of 3.5 min. Detection is carried out using electrospray MS in a multiple reaction monitor mode. The detection limits for cethromycin are 1 ng/mL for plasma and 0.2 ng/mL for BAL supernatants and AC suspensions. The assay has excellent performance characteristics and has been used to support a study of the intrapulmonary pharmacokinetics of cethromycin in human subjects.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Chromatography, High Pressure Liquid/methods , Erythromycin/analogs & derivatives , Erythromycin/analysis , Ketolides , Pulmonary Alveoli/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Erythromycin/blood , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...