Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1409095, 2024.
Article in English | MEDLINE | ID: mdl-39135653

ABSTRACT

Introduction: Fusarium head blight (FHB) has a large influence on both the yield and quality of wheat grain worldwide. Host resistance is the most effective method for controlling FHB, but unfortunately, very few genetic resources on FHB resistance are available; therefore, identifying novel resistance genes or quantitative trait loci (QTLs) is valuable. Methods: Here, a recombinant inbred line (RIL) population containing 451 lines derived from the cross L661/PI672538 was sown in four different environments (2019CZa, 2019CZb, 2021QL and 2021WJ). Results: Five QTLs, consisting of two previously reported QTLs (FhbL693a and FhbL693b) and three new QTLs (FhbL693c, FhbL693d and FhbL693e), were identified. Further investigation revealed that FhbL693b, FhbL693c and FhbL693d could be detected in all four environments, and FhbL693a and FhbL693e were detected only in 2019CZb and 2021WJ, respectively. Among the QTLs, the greatest contribution (10.5%) to the phenotypic variation effect (PVE) was FhbL693d in 2021WJ, while the smallest (1.2%) was FhbL693e and FhbL693a in 2019CZb. The selection of 5Dindel-4 for FhbL693d, 4Aindel-7 for FhbL693c and 3Bindel-24 for FhbL693b decreased the number of damaged spikelets by 2.1, and a new line resistant to FHB named H140-2 was developed by marker-assisted selection (MAS). Discussion: These results could help to further improve FHB resistance in the future.

2.
BMC Genomics ; 25(1): 780, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134932

ABSTRACT

BACKGROUND: Rye (Secale cereale L.) is the most widely used related species in wheat genetic breeding, and the introduction of its chromosome fragments into the wheat genome through distant hybridization is essential for enriching the genetic diversity of wheat. Rapid and accurate detection of rye chromatin in the wheat genome is important for distant hybridization. Simple sequence repeats (SSRs) are widely distributed in the genome, and SSRs of different species often exhibit species-specific characteristics. RESULTS: In this study, genome-wide SSRs in rye were identified, and their characteristics were outlined. A total of 997,027 SSRs were selected, with a density of 115.97 SSRs/Mb on average. There was no significant difference in the number of SSRs on each chromosome. The number of SSRs on 2R was the highest (15.29%), and the number of SSRs on 1R was the lowest (13.02%). The number of SSRs on each chromosome is significantly correlated with chromosome length. The types of SSR motifs were abundant, and each type of SSR was distributed on 7 chromosomes of rye. The numbers of mononucleotide simple sequence repeats (MNRs), dinucleotide simple sequence repeats (DNRs), and trinucleotide simple sequence repeats (TNRs) were the greatest, accounting for 46.90%, 18.37%, and 22.64% of the total number, respectively. Among the MNRs, the number of G/C repeats and the number of 10 bp motifs were the greatest, accounting for 26.24% and 31.32% of the MNRs, respectively. Based on the SSR sequences, a total of 657 pairs of primers were designed. The PCR results showed that 119 pairs of these primers were rye-specific and could effectively detect rye chromatin in the wheat genome. Moreover, 86 pairs of the primers could also detect one or more specific rye chromosomes. CONCLUSION: These results lay a foundation for both genomic evolution studies of rye and molecular breeding in wheat.


Subject(s)
Chromosomes, Plant , Genome, Plant , Microsatellite Repeats , Secale , Secale/genetics , Microsatellite Repeats/genetics , Chromosomes, Plant/genetics , Genetic Markers , Triticum/genetics , Genomics/methods
3.
Phytopathology ; : PHYTO07230236R, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38723196

ABSTRACT

Stripe rust and powdery mildew are serious diseases that severely decrease the yield of wheat. Planting wheat cultivars with powdery mildew and stripe rust resistance genes is the most effective way to control these two diseases. Introducing disease resistance genes from related species into the wheat genome via chromosome translocation is an important way to improve wheat disease resistance. In this study, nine novel T1RS.1AL translocation lines were developed from the cross of wheat cultivar Chuannong25 (CN25) and a Chinese rye Qinling. The results of non-denaturing fluorescence in situ hybridization and PCR showed that all new lines were homozygous for the T1RS.1AL translocation. These new T1RS.1AL translocation lines exhibited strong resistance to stripe rust and powdery mildew. The cytogenetics results indicated that the resistance of the new lines was conferred by the 1RS chromosome arms, which came from Qinling rye. The genetic analysis indicated that there were new dominant resistance genes on the 1RS chromosome arm resistant to stripe rust and powdery mildew, and their resistance patterns were different from those of Yr9, Pm8, and Pm17 genes. In addition, the T1RS.1AL translocation lines generally exhibited better agronomic traits in the field relative to CN25. These T1RS.1AL translocations have great potential in wheat-breeding programs in the future.

4.
Theor Appl Genet ; 137(4): 83, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491113

ABSTRACT

KEY MESSAGE: A major and stable QTL, QFn.sau-1B.2, which can explain 13.6% of the PVE in FN and has a positive effect on resistance in SGR, was mapped and validated. The falling number (FN) is considered one of the most important quality traits of wheat grain and is the most important quality evaluation index for wheat trade worldwide. The quantitative trait loci (QTLs) for FN were mapped in three years of experiments. 23, 30, and 58 QTLs were identified using the ICIM-BIP, ICIM-MET, and ICIM-EPI methods, respectively. Among them, seven QTLs were considered stable. QFn.sau-1B.2, which was mapped to the 1BL chromosome, can explain 13.6% of the phenotypic variation on average and is considered a major and stable QTL for FN. This QTL was mapped in a 1 cM interval and is flanked by the markers AX-110409346 and AX-108743901. Epistatic analysis indicated that QFN.sau-1B.2 has a strong influence on FN through both additive and epistatic effects. The Kompetitive Allele-Specific PCR marker KASP-AX-108743901, which is closely linked to QFn.sau-1B.2, was designed. The genetic effect of QFn.sau-1B.2 on FN was successfully confirmed in Chuannong18 × T1208 and CN17 × CN11 populations. Moreover, the results of the additive effects of favorable alleles for FN showed that the QTLs for FN had significant effects not only on FN but also on the resistance to spike germination. Within the interval of QFn.sau-1B.2, 147 high-confidence genes were found. According to the gene annotation and the transcriptome data, four genes might be associated with FN. QFn.sau-1B.2 may provide a new resource for the high-quality breeding of wheat in the future.


Subject(s)
Quantitative Trait Loci , Triticum , Triticum/genetics , Chromosome Mapping , Plant Breeding , Phenotype
5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069295

ABSTRACT

Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the available reference genome and transcriptome of Akebia trifoliata. The average length and exon number of the 47 identified AktPGs, unevenly assigned on 14 chromosomes and two unassembled contigs, were 5399 bp and 7, respectively. The phylogenetic tree of 191 PGs, including 47, 57, 51, and 36 from A. trifoliata, Durio zibethinus, Actinidia chinensis, and Vitis vinifera, respectively, showed that AktPGs were distributed in all groups except group G and that 10 AktPGs in group E were older, while the remaining 37 AktPGs were younger. Evolutionarily, all AktPGs generally experienced whole-genome duplication (WGD)/segmental repeats and purifying selection. Additionally, the origin of conserved domain III was possibly associated with a histidine residue (H) substitute in motif 8. The results of both the phylogenetic tree and expression profiling indicated that five AktPGs, especially AktPG25, could be associated with the cracking process. Detailed information and data on the PG family are beneficial for further study of the postharvest biology of A. trifoliata.


Subject(s)
Genes, Plant , Polygalacturonase , Phylogeny , Polygalacturonase/metabolism , Transcriptome , Plants/metabolism
6.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762591

ABSTRACT

A recombinant inbred line population including 371 lines was developed by a high kernel number per spike (KNPS) genotype T1208 and a low KNPS genotype Chuannong18 (CN18). A genetic linkage map consisting of 11,583 markers was constructed by the Wheat55K SNP Array. The quantitative trait loci (QTLs) related to KNPS were detected in three years. Eight, twenty-seven, and four QTLs were identified using the ICIM-BIP, ICIM-MET, and ICIM-EPI methods, respectively. One QTL, QKnps.sau-2D.1, which was mapped on chromosome 2D, can explain 18.10% of the phenotypic variation (PVE) on average and be considered a major and stable QTL for KNPS. This QTL was located in a 0.89 Mb interval on chromosome 2D and flanked by the markers AX-109283238 and AX-111606890. Moreover, KASP-AX-111462389, a Kompetitive Allele-Specific PCR (KASP) marker which closely linked to QKnps.sau-2D.1, was designed. The genetic effect of QKnps.sau-2D.1 on KNPS was successfully confirmed in two RIL populations. The results also showed that the significant increase of KNPS and 1000-kernel weight (TKW) was caused by QKnps.sau-2D.1 overcoming the disadvantage due to the decrease of spike number (SN) and finally lead to a significant increase of grain yield. In addition, within the interval in which QKnps.sau-2D.1 is located in Chinese Spring reference genomes, only fifteen genes were found, and two genes that might associate with KNPS were identified. QKnps.sau-2D.1 may provide a new resource for the high-yield breeding of wheat in the future.

7.
Int J Mol Sci ; 24(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36902404

ABSTRACT

As a kind of plant-specific transcription factor (TF), DNA-Binding One Zinc Finger (Dof) is widely involved in the response to environmental change, and as an evolutionarily important perennial plant species, Akebia trifoliata is ideal for studying environmental adaptation. In this study, a total of 41 AktDofs were identified in the A. trifoliata genome. First, the characteristics, including the length, exon number, and chromosomal distribution of the AktDofs and the isoelectric point (PI), amino acid number, molecular weight (MW), and conserved motifs of their putative proteins, were reported. Second, we found that all AktDofs evolutionarily underwent strong purifying selection, and many (33, 80.5%) of them were generated by whole-genome duplication (WGD). Third, we outlined their expression profiles by the use of available transcriptomic data and RT-qPCR analysis. Finally, we identified four candidate genes (AktDof21, AktDof20, AktDof36, and AktDof17) and three other candidate genes (AktDof26, AktDof16, and AktDof12) that respond to long day (LD) and darkness, respectively, and that are closely associated with phytohormone-regulating pathways. Overall, this research is the first to identify and characterize the AktDofs family and is very helpful for further research on A. trifoliata adaptation to environmental factors, especially photoperiod changes.


Subject(s)
Plant Growth Regulators , Transcription Factors , Transcription Factors/metabolism , Photoperiod , Phylogeny , Zinc Fingers , Plants/metabolism , DNA , Plant Proteins/genetics
8.
Antioxidants (Basel) ; 12(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36978974

ABSTRACT

Akebia trifoliata is a newly domesticated perennial fruit tree, and the lack of molecular research on stress resistance seriously affects its genetic improvement and commercial value development. Superoxide dismutase (SOD) can effectively eliminate the accumulation of reactive oxygen species (ROS) during the rapid growth of plant organs under biotic and abiotic stresses, maintaining a steady state of physiological metabolism. In this study, 13 SODs consisting of two FeSODs (FSDs), four MnSODs (MSDs) and seven Cu/ZnSODs (CSDs) were identified in the A. trifoliata genome. Structurally, the phylogeny, intron-exon pattern and motif sequences within these three subfamilies show high conservation. Evolutionarily, segmental/wide genome duplication (WGD) and dispersed duplication form the current SOD profile of A. trifoliata. Weighted gene coexpression network analysis (WGCNA) revealed the metabolic pathways of nine (69.2%) SODs involved in fruit development, among which AktMSD4 regulates fruit development and AktCSD4 participates in the stress response. In addition, under the stress of multiple pathogens, six (46.6%) SODs were continuously upregulated in the rinds of resistant lines; of these, three SODs (AktMSD1, AktMSD2 and AktMSD3) were weakly or not expressed in susceptible lines. The results pave the way for theoretical research on SODs and afford the opportunity for genetic improvement of A. trifoliata.

9.
Plant Sci ; 330: 111657, 2023 May.
Article in English | MEDLINE | ID: mdl-36813241

ABSTRACT

Few available leaf color mutants in crops have greatly limited the understanding of photosynthesis mechanisms, leading to few accomplishments in crop yield improvement via enhanced photosynthetic efficiency. Here, a noticeable albino mutant, CN19M06, was identified. A comparison between CN19M06 and the wild type CN19 at different temperatures showed that the albino mutant was temperature-sensitive and produced leaves with a decreased chlorophyll content at temperatures below 10 °C. Genetic analysis suggested that the albinism was controlled by one recessive nuclear gene named TSCA1, which was putatively assigned to the region of 718.1-729.8 Mb on chromosome 2AL using bulked-segregant analysis and double-digest restriction site-associated DNA. Finally, molecular linkage analysis physically anchored TSCA1 to a narrowed region of 718.8-725.3 Mb with a 6.5 Mb length on 2AL flanked by InDel 18 and InDel 25 with 0.7 cM genetic interval. Among the 111 annotated functional genes in the corresponding chromosomal region, only TraesCS2A01G487900 of the PAP fibrillin family was both related to chlorophyll metabolism and temperature sensitivity; therefore, it was considered the putative candidate gene of TSCA1. Overall, CN19M06 has great potential for exploring the molecular mechanism of photosynthesis and monitoring temperature changes in wheat production.


Subject(s)
Chlorophyll , Triticum , Triticum/genetics , Triticum/metabolism , Temperature , Chromosome Mapping , Chlorophyll/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Phenotype
10.
Curr Issues Mol Biol ; 46(1): 11-24, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38275662

ABSTRACT

Akebia trifoliata is an economically important, self-incompatible fruit tree in the Lardizabalaceae family. Asexual propagation is the main strategy used to maintain excellent agronomic traits. However, the generation of adventitious roots during asexual propagation is very difficult. To study the important role of the WUSCHEL-related homeobox (WOX) transcription factor in adventitious root growth and development, we characterized this transcription factor family in the whole genome of A. trifoliata. A total of 10 AktWOXs were identified, with the following characteristics: length (657~11,328 bp), exon number (2~5), isoelectric point (5.65~9.03), amino acid number (176~361 AA) and molecular weight (20.500~40.173 kDa), and their corresponding expression sequence could also be detectable in the public transcriptomic data for A. trifoliata fruit. A total of 10 AktWOXs were classified into modern (6), intermediate (2) and ancient clades (2) and all AktWOXs had undergone strong purifying selection during evolution. The expression profile of AktWOXs during A. trifoliata adventitious root formation indicated that AktWOXs play an important role in the regulation of adventitious root development. Overall, this is the first study to identify and characterize the WOX family in A. trifoliata and will be helpful for further research on A. trifoliata adventitious root formation.

11.
Plant J ; 112(5): 1316-1330, 2022 12.
Article in English | MEDLINE | ID: mdl-36305286

ABSTRACT

The environmental adaptation of eudicots is the most reasonable explanation for why they compose the largest clade of modern plants (>70% of angiosperms), which indicates that the basal eudicots would be valuable and helpful to study their survival and ability to thrive throughout evolutionary processes. Here, we detected two whole-genome duplication (WGD) events in the high-quality assembled Akebia trifoliata genome (652.73 Mb) with 24 138 protein-coding genes based on the evidence of intragenomic and intergenomic collinearity, synonymous substitution rate (KS ) values and polyploidization and diploidization traces; these events putatively occurred at 85.15 and 146.43 million years ago (Mya). The integrated analysis of 16 species consisting of eight basal and eight core eudicots further revealed that there was a putative ancient WGD at the early stage of eudicots (temporarily designated θ) at 142.72 Mya, similar to the older WGD of Akebia trifoliata, and a putative core eudicot-specific WGD (temporarily designated ω). Functional enrichment analysis of retained duplicate genes following the θ event is suggestive of adaptation to the extreme environment change in both the carbon dioxide concentration and desiccation around the Jurassic-Cretaceous boundary, while the retained duplicate genes following the ω event is suggestive of adaptation to the extreme droughts, possibly leading to the rapid spread of eudicots in the mid-Cretaceous. Collectively, the A. trifoliata genome experienced two WGD events, and the older event may have occurred at the early stage of eudicots, which likely increased plant environmental adaptability and helped them survive in ancient extreme environments.


Subject(s)
Gene Duplication , Genome, Plant , Genome, Plant/genetics , Phylogeny , Genes, Duplicate , Plants/genetics , Chromosomes , Evolution, Molecular
12.
Genes (Basel) ; 13(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36292662

ABSTRACT

As the largest clade of modern plants, flower plants have evolved a wide variety of flowers and fruits. MADS-box genes play key roles in regulating plant morphogenesis, while basal eudicots have an evolutionarily important position of acting as an evolutionary bridge between basal angiosperms and core eudicots. Akebia trifoliata is an important member of the basal eudicot group. To study the early evolution of angiosperms, we identified and characterized the MADS-Box gene family on the whole-genome level of A. trifoliata. There were 47 MADS-box genes (13 type I and 34 type II genes) in the A. trifoliata genome; type I genes had a greater gene length and coefficient of variation and a smaller exon number than type II genes. A total of 27 (57.4%) experienced whole or segmental genome duplication and purifying selection. A transcriptome analysis suggested that three and eight genes were involved in whole fruit and seed development, respectively. The diversification and phylogenetic analysis of 1479 type II MADS-box genes of 22 angiosperm species provided some clues indicating that a γ whole genome triplication event of eudicots possibility experienced a two-step process. These results are valuable for improving A. trifoliata fruit traits and theoretically elucidating evolutionary processes of angiosperms, especially eudicots.


Subject(s)
Magnoliopsida , Magnoliopsida/genetics , MADS Domain Proteins/genetics , Phylogeny , Evolution, Molecular , Plant Proteins/genetics
13.
Front Plant Sci ; 13: 992016, 2022.
Article in English | MEDLINE | ID: mdl-36061779

ABSTRACT

Stripe rust and powdery mildew are devastating diseases that have severe effects on wheat production. Introducing resistant genes/loci from wheat-related species into the wheat genome is an important method to improve wheat resistance. Rye (Secale cereale L.) is a cross-pollinating plant and is the most important related species for wheat genetic improvement. In this study, we developed three 6RS ditelosomic addition lines, three 6RL ditelosomic addition lines, and two 6R disomic addition lines by crossing common wheat cultivar Chuannong 25 and rye inbred line QL2. The chromosome composition of all new lines was confirmed by non-denaturing fluorescence in situ hybridization (ND-FISH) and molecular marker analyses. Disease responses to different Puccinia striiformis f. sp. tritici (Pst) races and Blumeria graminis f. sp. tritici (Bgt) isolates and cytogenetic analysis showed that the resistance of the new lines was derived from the rye chromosome 6R of QL2, and both arms (6RS and 6RL) may harbor resistance genes against Pst and Bgt. These new lines could be used as a promising bridging parent and valuable genetic resource for wheat disease resistance improvement.

14.
Front Plant Sci ; 13: 971927, 2022.
Article in English | MEDLINE | ID: mdl-36092447

ABSTRACT

Breeders agree that leaf senescence is a favorable process for wheat seed yield improvement due to the remobilization of leaf nutrients. However, several studies have suggested that staying green may be an important strategy for further increasing wheat yields. In this study, we performed a comparative transcriptome analysis between wheat cultivars CN17 and CN19 after heading and also measured photosynthetic parameters, chlorophyll (Chl) contents, and antioxidant enzyme activities at various time points after heading. The physiological and biochemical indexes revealed that CN17 exhibited a functionally stay-green phenotype while CN19 did not. We identified a total of 24,585 and 34,410 differential expression genes between genotypes at two time-points and between time-points in two genotypes, respectively, and we also found that 3 (37.5%) genes for leaf senescence, 46 (100%) for photosynthesis - antenna protein, 33 (70.21%) for Chl metabolism and 34 (68%) for antioxidative enzyme activity were upregulated in CN17 compared with CN19 during leaf senescence, which could be regulated by the differential expression of SAG39 (senescence-associated gene 39), while 22 (100%) genes for photosynthesis - antenna proteins, 6 (46.15%) for Chl metabolism and 12 (80%) for antioxidative enzyme activity were upregulated in CN17 compared with CN19 before the onset of leaf senescence. Here, we further clarified the expression profiles of genes associated with a functional stay-green phenotype. This information provides new insight into the mechanism underlying delayed leaf senescence and a new strategy for breeders to improve wheat yields.

15.
Genes (Basel) ; 13(9)2022 08 26.
Article in English | MEDLINE | ID: mdl-36140708

ABSTRACT

WRKY transcription factors have been found in most plants and play an important role in regulating organ growth and disease response. Outlining the profile of WRKY genes is a very useful project for studying morphogenesis and resistance formation. In the present study, a total of 63 WRKY genes consisting of 13 class I, 41 class II, and 9 class III genes were identified from the newly published A. trifoliata genome, of which 62 were physically distributed on all 16 chromosomes. Structurally, two AkWRKY genes (AkWRKY6 and AkWRKY52) contained four domains, and AkWRKY17 lacked the typical heptapeptide structure. Evolutionarily, 42, 16, and 5 AkWRKY genes experienced whole genome duplication (WGD) or fragmentation, dispersed duplication, and tandem duplication, respectively; 28 Ka/Ks values of 30 pairs of homologous genes were far lower than 1, while those of orthologous gene pairs between AkWRKY41 and AkWRKY52 reached up to 2.07. Transcriptome analysis showed that many of the genes were generally expressed at a low level in 12 fruit samples consisting of three tissues, including rind, flesh, and seeds, at four developmental stages, and interaction analysis between AkWRKY and AkNBS genes containing W-boxes suggested that AkWRKY24 could play a role in plant disease resistance by positively regulating AkNBS18. In summary, the WRKY gene family of A. trifoliata was systemically characterized for the first time, and the data and information obtained regarding AkWRKY could be very useful in further theoretically elucidating the molecular mechanisms of plant development and response to pathogens and practically improving favorable traits such as disease resistance.


Subject(s)
Genes, Plant , Transcription Factors , Computational Biology , Disease Resistance/genetics , Humans , Phylogeny , Plant Proteins/metabolism , Transcription Factors/metabolism
16.
Int J Mol Sci ; 23(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36142406

ABSTRACT

In this study, a novel T6RS.6AL translocation line, 117-6, was selected from a cross between common Chuannong25 (CN25) wheat and Qinling rye. The results of nondenaturing fluorescence in situ hybridization (ND-FISH) and PCR showed that 117-6 contained two T6RS.6AL translocation chromosomes. The distal region of the 6RS chromosome in 117-6 was mutant and showed different FISH signal patterns. When inoculated with different stripe rust races and powdery mildew races in seedlings, 117-6 expressed high resistance to them. The 117-6 line also exhibited high resistance to stripe rust and powdery mildew in the field under natural Puccinia striiformis f. sp. tritici (Pst) and Blumeria graminis f. sp. tritici (Bgt) infection. The cytogenetic analysis indicated that the introduction of 6RS conferred resistance ability. Compared with wheat parent CN25, 117-6 exhibited excellent agronomic traits in the field. The present study indicated that Qinling rye may carry favorite genes as a potential source for wheat genetic improvement, and 117-6 could be a useful germplasm for wheat breeding programs in the future.


Subject(s)
Basidiomycota , Secale , Basidiomycota/genetics , Chromosomes, Plant/genetics , Cytogenetic Analysis , Disease Resistance/genetics , Erysiphe , In Situ Hybridization, Fluorescence , Plant Breeding , Plant Diseases/genetics , Secale/genetics , Translocation, Genetic , Triticum/genetics
17.
Theor Appl Genet ; 135(12): 4183-4195, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36068440

ABSTRACT

KEY MESSAGE: A major and stable QTL cQSGR.sau.3D, which can explain 33.25% of the phenotypic variation in SGR, was mapped and validated, and cQSGR.sau.3D was found to be independent of GI. In this study, a recombinant inbred line (RIL) population containing 304 lines derived from the cross of Chuan-nong17 (CN17) and Chuan-nong11 (CN11) was genotyped using the Wheat55K single-nucleotide polymorphism array. A high-density genetic map consisting of 8329 markers spanning 4131.54 cM and distributed across 21 wheat chromosomes was constructed. QTLs for whole spike germination rate (SGR) were identified in multiple years. Six and fourteen QTLs were identified using the Inclusive Composite Interval Mapping-Biparental Populations and Multi-Environment Trial methods, respectively. A total of 106 digenic epistatic QTLs were also detected in this study. One of the additive QTLs, cQSGR.sau.3D, which was mapped in the region from 3.5 to 4.5 cM from linkage group 3D-2 on chromosome 3D, can explain 33.25% of the phenotypic variation in SGR and be considered a major and stable QTL for SGR. This QTL was independent of the seeds' germination traits, such as germination index. One Kompetitive Allele-Specific PCR (KASP) marker, KASP-AX-110772653, which is tightly linked to cQSGR.sau.3D, was developed. The genetic effect of cQSGR.sau.3D on SGR in the RIL and natural populations was successfully confirmed. Furthermore, within the interval in which cQSGR.sau.3D is located in Chinese Spring reference genomes, thirty-seven genes were found. cQSGR.sau.3D may provide new resources for pre-harvest sprouting resistance breeding of wheat in the future.


Subject(s)
Quantitative Trait Loci , Triticum , Triticum/genetics , Chromosome Mapping , Genotype , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide
18.
Genes (Basel) ; 13(8)2022 08 15.
Article in English | MEDLINE | ID: mdl-36011362

ABSTRACT

Akebia trifoliata, a member of the family Lardizabalaceae, has high exploitation potential for multiple economic purposes, so genetic improvements to meet requirements for commercial demand are needed. However, this progress is largely impeded by a lack of effective selection markers. In this study, we obtained 271.49 Gb of clean transcriptomic data from 12 samples (three tissues at four developmental stages) of A. trifoliata fruit. We identified 175,604, 194,370, and 207,906 SSRs from the de novo assembled 416,363, 463,756, and 491,680 unigene sequences obtained from the flesh, seed, and rind tissues, respectively. The profile and proportion of SSR motifs expressed in each fruit tissue and developmental stage were remarkably similar, but many trinucleotide repeats had differential expression levels among different tissues or at different developmental stages. In addition, we successfully designed 16,869 functional EST-SSR primers according to the annotated unigenes. Finally, 94 and 72 primer pairs out of 100 randomly selected primer pairs produced clear bands and polymorphic bands, respectively. These results were also used to elucidate the expression profiles of different tissues at various stages. Additionally, we provided a set of effective, polymorphic, and reliable EST-SSR markers sufficient for accelerating the discovery of metabolic and pathway-specific functional genes for genetic improvement and increased commercial productivity.


Subject(s)
Fruit , Microsatellite Repeats , Expressed Sequence Tags , Fruit/genetics , Genetic Markers/genetics , Microsatellite Repeats/genetics , Ranunculales
19.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35563016

ABSTRACT

In this study, a novel T1RS.1BL translocation line RT843-5 was selected from a cross between wheat Mianyang11 (MY11) and Weining rye. The results of MC-FISH, PCR, and A-PAGE showed that RT843-5 contained two intact T1RS.1BL translocation chromosomes. RT843-5 showed resistance to the most virulent and frequently occurring stripe rust races/isolates. Additionally, RT843-5 showed resistance in the field in locations where stripe rust outbreaks have been the most severe in China. Genetic analysis indicated one new gene for stripe rust resistance, located on 1RS of RT843-5, which was tentatively named YrRt843. Furthermore, the chlorophyll content, the activities of catalase (CAT), and superoxide dismutase (SOD), and the net photosynthetic rate (Pn) of RT843-5 were significantly higher than those in its wheat parent MY11, whereas malondialdehyde (MDA) accumulation was significantly lower after anthesis in RT843-5 compared to in MY11. RT843-5 had a significantly higher 1000-kernel weight and yield than MY11. The results indicated that RT843-5 exhibited functional stay-green traits after anthesis, that delayed the senescence process in wheat leaves during the filling stage and had positive effects on grain yield. The present study indicated that Weining rye may carry untapped variations as a potential source of resistance, and that RT843-5 could be an important material for wheat breeding programs in the future.


Subject(s)
Basidiomycota , Secale , Basidiomycota/genetics , Chromosomes, Plant/genetics , Cytogenetic Analysis , Disease Resistance/genetics , Edible Grain/genetics , Plant Breeding , Plant Diseases/genetics , Secale/genetics , Translocation, Genetic , Triticum/genetics
20.
Front Plant Sci ; 13: 860101, 2022.
Article in English | MEDLINE | ID: mdl-35371184

ABSTRACT

Akebia trifoliata is a perennial climbing woody liana plant with a high potential for commercial exploitation and theoretical research. Similarly, microsatellites (simple sequence repeats, SSRs) also have dual roles: as critical markers and as essential elements of the eukaryotic genome. To characterize the profile of SSRs and develop molecular markers, the high-quality assembled genome of A. trifoliata was used. Additionally, to determine the potential transferability of SSR loci, the genomes of Amborella trichopoda, Oryza sativa, Vitis vinifera, Arabidopsis thaliana, Papaver somniferum, and Aquilegia coerulea were also used. We identified 434,293 SSRs with abundant short repeats, such as 290,868 (66.98%) single-nucleotide repeats (SNRs) and 113,299 (26.09%) dinucleotide repeats (DNRs) in the A. trifoliata genome. 398,728 (91.81%) SSRs on 344,283 loci were physically mapped on the chromosomes, and a positive correlation (r = 0.98) was found between the number of SSRs and chromosomal length. Additionally, 342,916 (99.60%) potential SSR markers could be designed from the 344,283 physically mapped loci, while only 36,160 could be viewed as high-polymorphism-potential (HPP) markers, findings that were validated by PCR. Finally, SSR loci exhibited broad potential transferability, particularly DNRs such as the "AT/AT" and "AG/CT" loci, among all angiosperms, a finding that was not related to the genetic divergence distance. Practically, we developed a whole set of effective, polymorphic, and physically anchored molecular markers and found that, evolutionarily, DNRs could be responsible for microsatellite origin and protecting gene function.

SELECTION OF CITATIONS
SEARCH DETAIL