Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Aging Cell ; : e14349, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39380368

ABSTRACT

Aging-related decline in memory and synaptic function are associated with the dysregulation of calcium homeostasis, attributed to the overexpression of voltage-gated calcium channels (VGCC). The membrane insertion of AMPAR governed by the AMPAR auxiliary proteins is essential for synaptic transmission and plasticity (LTP). In this study, we demonstrated the hippocampal expression of the transmembrane AMPAR regulatory proteins γ-8 (TARPγ8) was reduced in aged mice along with the reduced CaMKIIα activity and memory impairment. We further showed that TARPγ8 expression was dependent on CaMKIIα activity. Inhibition of CaMKIIα activity significantly reduced the hippocampal TARPγ8 expression and CA3-CA1 LTP in young mice to a similar level to that of the aged mice. Furthermore, the knockdown of hippocampal TARPγ8 impaired LTP and memory in young mice, which mimicked the aging-related changes. We confirmed the enhanced hippocampal VGCC (Cav-1.3) expression in aged mice and found that inhibition of VGCC activity largely increased both p-CaMKIIα and TARPγ8 expression in aged mice, whereas inhibition of NMDAR or Calpains had no effect. In addition, we found that the exogenous expression of human TARPγ8 in the hippocampus in aged mice restored LTP and memory function. Collectively, these results indicate that the synaptic and cognitive impairment in aging is associated with the downregulation of CaMKIIα-TARPγ8 signaling caused by VGCC activation. Our results suggest that TARPγ8 may be a key molecular biomarker for brain aging and that boosting CaMKIIα-TARPγ8 signaling may be critical for the restoration of synaptic plasticity of aging and aging-related diseases.

2.
Endocrine ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251468

ABSTRACT

PURPOSE: Our goal was to compare the lateralization of 68Ga-pentixafor PET/CT with adrenal vein sampling (AVS) in primary aldosteronism (PA) patients with unilateral lesions. METHODS: We retrospectively enrolled 61 patients with PA and all patients showed unilateral nodular lesions on CT and underwent 68Ga-Pentixafor PET/CT. The general clinical data, imaging and AVS results were collected. The diagnostic efficiency of 68Ga-Pentixafor PET/CT imaging in PA patients was calculated by visual and semi-quantitative analysis to compare the consistency with AVS, and the correlation between CXCR4 express and 68Ga-Pentixafor uptake was performed. RESULTS: The study included 42 unilateral PA (UPA) and 19 bilateral PA (BPA). The area under curve (AUC) of 68Ga-Pentixafor PET/CT to diagnosis UPA with 10 min maximum standardized uptake value (SUVmax) > 8.17 was 0.82 ([0.70-0.90], P < 0.001), and the sensitivity and specificity were 0.64 and 0.90, respectively. The maximal AUC of 68Ga-pentixafor PET/CT for the diagnosis UPA in patients with nodules with a diameter ≥1 cm was 0.87 ([0.73-0.95],P both <0.001,[10 min SUVmax=8.17 and 10 min mean standardized uptake value (SUVmean)=5.57]), and the sensitivity and specificity were 0.73 and 0.93, respectively. Unilateral adrenalectomy and significant CXCR4 expression were present in 32 UPA, including 27 aldosterone-producing adenoma and 5 idiopathic adrenal hyperplasia. Additionally, 68Ga-pentixafor uptake in adrenal lesions was significantly correlated with CXCR4 expression, and statistical differences in 68Ga-pentixafor uptake among IRS subgroups. CONCLUSIONS: 68Ga-Pentixafor PET/CT can be helpful for subtyping diagnosis of PA patients with unilateral adrenal nodular, showing significant potential in non-invasive PA classification.

3.
Life (Basel) ; 14(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39202756

ABSTRACT

Cnidarians are among the most important diploblastic organisms, elucidating many of the early stages of Metazoan evolution. However, Cnidarian fossils from Cambrian deposits have been rarely documented, mainly due to difficulties in identifying early Cnidarian representatives. Halysites, a tabulate coral from Silurian reef systems, serves as a crucial taxon for interpreting Cambrian cnidarians. Traditionally, the biological characteristics of Halysites have been analyzed using methods limited by pretreatment requirements (destructive testing) and the chamber size capacity of relevant analytical instruments. These constraints often lead to irreversible information loss and inadequate data extraction. This means that, to date, there has been no high-resolution three-dimensional mineralization analysis of Halysites. This study aims to introduce novel, non-destructive techniques to analyze the internal structure and chemical composition of Halysites. Furthermore, it seeks to elucidate the relationship between coral organisms and biomineralization in reef settings and to compare Silurian Tabulata with putative Cambrian cnidarians. Techniques such as micro-X-ray fluorescence spectrometry (micro-XRF), micro-X-ray computed tomography (micro-CT), and scanning electron microscopy (SEM) were employed in this research. With the help of high-resolution micro-CT scanning, we identify the growth pattern of Halysites, showing both lateral and vertical development. The lateral multiple-branching growth pattern of Halysites corals is first established herein. The flaggy corallite at the initial stage of branching is also observed. The micro-XRF mapping results reveal the occurrence of septa spines for Halysites, a trait previously thought rare or absent. Additionally, the ratio of coral volume to the surrounding rock was assessed, revealing that Halysites reefs were relatively sparse (volume ratio = ~30%). The cavities between Halysites likely provided more space for other organisms (e.g., rugose corals and bryozoans) when compared to other coral reef types. Additionally, we provide a comparative analysis of post-Cambrian colonial calcareous skeletons, offering insights into the structural features and growth patterns of early skeletal metazoans across the Ediacaran-Cambrian boundary.

4.
BMC Cancer ; 24(1): 1060, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39192214

ABSTRACT

BACKGROUND: It is challenging to improve the effects of chemotherapy and reduce its adverse impact on the ovaries. Our previous study suggested that the combination of galaxamide could enhance the antitumor effect of cisplatin (CIS) in HeLa cell xenograft mice. However, their potential effects on ovarian tissues remain unknown. METHODS: The Hela tumor-bearing female BALB/c mice model was established and randomly divided into three groups: control group (PBS group), CIS group (0.3 mg/kg CIS group) and galaxamide group (0.3 mg/kg CIS + 3 mg/kg galaxamide-treated group). The serum sex hormones levels, ovarian morphology, functional and molecular characterisation were determined and compared with those of the control group. RESULTS: The hormonal effects indicated premature ovarian insufficiency (POI) associated with CIS-induced tumor-bearing mice. CIS induces the apoptosis in primordial and developing follicles and subsequently increases follicular atresia, eventually leading to follicle loss. After cotreatment, galaxamide significantly increased anti-Mullerian hormone (AMH) and follicle-stimulating hormone receptor (FSHR) expression and prevented the CIS-induced PI3K pathway, which triggers follicle activation, apoptosis or atresia. CONCLUSION: These findings demonstrate that galaxamide could attenuate CIS-induced follicle loss by acting on the PI3K signaling pathway by stimulating AMH and/or FSHR and thus provides promising therapeutic options for patients with cervical cancer.


Subject(s)
Cisplatin , Phosphatidylinositol 3-Kinases , Primary Ovarian Insufficiency , Signal Transduction , Animals , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/metabolism , Female , Humans , Mice , Cisplatin/adverse effects , Signal Transduction/drug effects , HeLa Cells , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred BALB C , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Anti-Mullerian Hormone/blood , Anti-Mullerian Hormone/metabolism , Antineoplastic Agents/pharmacology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Receptors, FSH/metabolism , Receptors, FSH/genetics
5.
Int J Biol Macromol ; 276(Pt 1): 133834, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002899

ABSTRACT

IL-2 regulates the immune response by interacting with different IL-2 receptor (IL-2R) subunits. High dose of IL-2 binds to IL-2Rßγc heterodimer, which induce various side effects while activating immune function. Disrupting IL-2 and IL-2R interactions can block IL-2 mediated immune response. Here, we used a computational approach to de novo design mini-binder proteins against IL-2R ß chain (IL-2Rß) to block IL-2 signaling. The hydrophobic region where IL-2 binds to IL-2Rß was selected and the promising binding mode was broadly explored. Three mini-binders with amino acid numbers ranging from 55 to 65 were obtained and binder 1 showed the best effects in inhibiting CTLL-2 cells proliferation and STAT5 phosphorylation. Molecular dynamics simulation showed that the binding of binder 1 to IL-2Rß was stable; the free energy of binder1/IL-2Rß complex was lower, indicating that the affinity of binder 1 to IL-2Rß was higher than that of IL-2. Free energy decomposition suggested that the ARG35 and ARG131 of IL-2Rß might be the key to improve the affinity of binder. Our efforts provided new insights in developing of IL-2R blocker, offering a potential strategy for ameliorating the side effects of IL-2 treatment.


Subject(s)
Interleukin-2 Receptor beta Subunit , Interleukin-2 , Molecular Dynamics Simulation , Protein Binding , Interleukin-2 Receptor beta Subunit/metabolism , Interleukin-2 Receptor beta Subunit/chemistry , Interleukin-2/metabolism , Interleukin-2/chemistry , Humans , Cell Proliferation/drug effects , STAT5 Transcription Factor/metabolism , Phosphorylation/drug effects , Animals , Molecular Docking Simulation
6.
Ann Nucl Med ; 38(9): 688-699, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39044048

ABSTRACT

Differentiated thyroid cancer (DTC) is the most common endocrine malignancy. Patients who receive systematic care typically have a better prognosis. RAI treatment plays a key role in eradicating any remaining thyroid lesions in DTC patients, hence decreasing the risk of distant metastases and cancer recurrence. As research continues to advance, RAI treatment is becoming more and more individualized. Because of the excellent prognosis for DTC patients, there is a relatively broad window for RAI treatment, making it easy to overlook when to receive RAI treatment. However, research on this issue can help patients with varying recurrence risk stratification make better decisions about when to begin RAI treatment following surgery, and physicians can schedule patients based on the severity of their disease. This will improve patient prognosis and lessen needless anxiety in addition to helping solve the problems of unjust healthcare resource distribution. In this review, we will mainly discuss the target population of RAI treatment as well as studies that examine the impact of RAI treatment timing on patient outcomes. In an effort to discourage DTC patients and physicians from selecting RAI therapy at random, we also review the possible negative effects of this treatment.


Subject(s)
Iodine Radioisotopes , Thyroid Neoplasms , Humans , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Iodine Radioisotopes/therapeutic use , Time Factors , Postoperative Period , Postoperative Care
7.
Opt Lett ; 49(12): 3504-3507, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875656

ABSTRACT

Stable pulse and flat-top frequency comb generation are an indispensable component of many photonic applications, from ranging to communications. Lithium niobate on insulator is an excellent electro-optic (EO) platform, exhibiting high modulation efficiency and low optical loss, making it a fitting candidate for pulse generation through electro-optic modulation of continuous-wave (CW) light, a commonly utilized method for generating ultrashort pulses. Here, we demonstrate an on-chip electro-optic comb generation module on thin-film lithium niobate (TFLN) consisting of a Mach-Zehnder interferometer (MZI) amplitude modulator (AM) and a cascaded phase modulator (PM) system driven by a single-electrode drive. We show that when operated in the correct regime, the lithium niobate chips can generate frequency combs with excellent spectral power flatness. In addition, we optically package one of the pulse generator chips via photonic wire bonding. The pulses generated by the photonic-wire-bonded device are compressed to 840 fs pulse duration using an optical fiber and show extremely stable operation.

8.
Front Plant Sci ; 15: 1348080, 2024.
Article in English | MEDLINE | ID: mdl-38855466

ABSTRACT

Clonal plants are widely distributed in the riparian zone and play a very important role in the maintenance of wetland ecosystem function. Flooding is an environmental stress for plants in the riparian zone, and the response of plants varies according to the depth and duration of flooding. However, there is a lack of research on the growth response of clonal plants during flooding, and the endogenous hormone response mechanism of clonal plants is still unclear. In the present study, Alternanthera philoxeroides, a clonal plant in the riparian zone, was used to investigate the time-dependent stem elongation, the elongation of different part of the immature internodes, and the relationship between growth elongation and the phytohormone gibberellin (GA) under a series of submergence depths (0 m, 2 m, 5 m, and 9 m). The results showed that stem elongation occurred under all treatments, however, compared to 0 m (control), plants grew more under 2 m and 5 m submergence depth, while grew less under 9 m water depth. Additionally, basal part elongation of the immature internode was the predominant factor contributing to the stem growth of A. philoxeroides under different submergence depths. The phytohormone contents in basal part of the mature and immature internodes showed that GA induced the differential elongation of internode. Plant submerged at depth of 2 m had the highest GA accumulation, but plant submerged at depth of 9 m had the lowest GA concentration. These data suggested that GA biosynthesis are essential for stem elongation in A. philoxeroides, and the basal part of the immature internode was the main position of the GA biosynthesis. This study provided new information about the rapid growth and invasion of the clonal plant A. philoxeroides around the world, further clarified the effects of submergence depth and duration on the elongation of the stem, and deepened our understanding of the growth response of terrestrial plants in deeply flooded environments.

9.
Front Neurosci ; 18: 1368552, 2024.
Article in English | MEDLINE | ID: mdl-38716255

ABSTRACT

Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.

10.
Nat Commun ; 15(1): 3641, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684736

ABSTRACT

Electrochemical carbon dioxide/carbon monoxide reduction reaction offers a promising route to synthesize fuels and value-added chemicals, unfortunately their activities and selectivities remain unsatisfactory. Here, we present a general surface molecular tuning strategy by modifying Cu2O with a molecular pyridine-derivative. The surface modified Cu2O nanocubes by 4-mercaptopyridine display a high Faradaic efficiency of greater than 60% in electrochemical carbon monoxide reduction reaction to acetate with a current density as large as 380 mA/cm2 in a liquid electrolyte flow cell. In-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy reveals stronger *CO signal with bridge configuration and stronger *OCCHO signal over modified Cu2O nanocubes by 4-mercaptopyridine than unmodified Cu2O nanocubes during electrochemical CO reduction. Density function theory calculations disclose that local molecular tuning can effectively regulate the electronic structure of copper catalyst, enhancing *CO and *CHO intermediates adsorption by the stabilization effect through hydrogen bonding, which can greatly promote asymmetric *CO-*CHO coupling in electrochemical carbon monoxide reduction reaction.

11.
Front Plant Sci ; 15: 1323547, 2024.
Article in English | MEDLINE | ID: mdl-38476682

ABSTRACT

Complete submergence, especially deep submergence, poses a serious threat to the growth and survival of plants. One study previously showed that Alternanthera philoxeroides (a herbaceous perennial plant) submerged at depth of 2 m presented fast stem elongation and reduced stem elongation as water depth increased. In the present study, we aimed to figure out from the morphological and anatomical perspective how the differential growth response of the plant to water depth was achieved. We investigated the elongation of different stem parts and the relationship of stem elongation to cell size and number in A. philoxeroides by conducting experiments using a series of submergence depths (0 m, 2 m, 5 m, and 9 m). The results showed that, in comparison with unsubmerged plants, completely submerged plants exhibited enhanced elongation at depths of 2 m and 5 m but suppressed elongation at depth of 9 m in immature stem internodes, and displayed very little elongation in mature stem internodes at any depths. The stem growth of A. philoxeroides at any submergence depth was chiefly caused by the elongation of the basal parts of immature internodes. The elongation of the basal parts of immature internodes was highly correlated to both cell proliferation and cell enlargement, but the elongation of the middle and upper parts of immature internodes correlated nearly only with cell enlargement. This study provided new information on the growth responses of A. philoxeroides to heterogeneous submergence environments and deepened our understanding of the growth performance of terrestrial plants in habitats prone to deep floods.

12.
Int J Biol Macromol ; 259(Pt 2): 129208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185298

ABSTRACT

The Staphylococcus aureus clumping factor A (ClfA) is a fibrinogen (Fg) binding protein that plays an important role in the clumping of S. aureus in blood plasma. The current anti-infective approaches targeting ClfA are mainly based on monoclonal antibodies but showed less impressive efficacy for clinical applications. Nanobodies offer advantages in enhanced tissue penetration and a propensity to bind small epitopes. However, there is no report on generating specific nanobodies for ClfA. Here, we constructed a synthetic nanobody library based on yeast surface display to isolate nanobodies against the Fg binding domain ClfA221-550. We firstly obtained a primary nanobody directed to ClfA221-550, and then employed error-prone mutagenesis to enhance its binding affinity. Finally, 18 variants were isolated with high affinities (EC50, 1.1 ± 0.1 nM to 4.8 ± 0.3 nM), in which CNb1 presented the highest inhibition efficiency in the adhesion of S. aureus to fibrinogen. Moreover, structural simulation analysis indicated that the epitope for CNb1 partially overlapped with the binding sites for fibrinogen, thus inhibiting ClfA binding to Fg. Overall, these results indicated that the specific nanobodies generated here could prevent the adhesion of S. aureus to fibrinogen, suggesting their potential capacities in the control of S. aureus infections.


Subject(s)
Single-Domain Antibodies , Staphylococcus aureus , Staphylococcus aureus/metabolism , Saccharomyces cerevisiae/metabolism , Single-Domain Antibodies/metabolism , Binding Sites , Fibrinogen/metabolism
13.
J Obstet Gynaecol Can ; 46(3): 102266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37940040

ABSTRACT

OBJECTIVES: To evaluate the occurrence of retained products of conception (RPOC) after termination of pregnancy in the first trimester and to assess the vascular signals with transvaginal ultrasonography (TVUS) examination in the detection of retained products. METHODS: A retrospective cohort study was performed using TVUS examination in patients following termination of pregnancy. In cases of RPOC, 3 scales of vascular signal were identified: type 1, no or small amount, spot flow signals; type 2, medium amount, strip-like flow signals; type 3, rich amount, circumferential-like flow signals. The correlation between vascular signals and placenta accreta spectrum (PAS) staging was proposed by sonography and histopathology findings. RESULTS: The 3 vascular patterns were differently distributed within non-RPOC as well as RPOC patients with and without PAS: type 1 vascular signal detection rates of non-RPOC and RPOC were 97.8% (262/268) and 28.1% (18/64), respectively. Of 64 cases of RPOC, 48.4% (31/64) of the patients had type 2 vascular signals. Vascular signals were enhanced in RPOC with PAS patients whose diagnosis was confirmed by histopathology. CONCLUSIONS: The vascularity (amount of flow), vascular pattern (spot, strip- or circumferential-like flow), and the flow penetrating myometrium were significant findings for distinguishing concomitant RPOC with and without PAS. Additionally, RPOC may contribute to PAS progression, or PAS and RPOC in coordination strengthen the observed vascular signals.


Subject(s)
Abortion, Induced , Abortion, Spontaneous , Placenta Diseases , Placenta, Retained , Pregnancy Complications , Pregnancy , Humans , Female , Pregnancy Trimester, First , Placenta, Retained/diagnostic imaging , Retrospective Studies
14.
Environ Sci Technol ; 57(37): 14071-14081, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37681682

ABSTRACT

Currently, the lack of model catalysts limits the understanding of the catalytic essence. Herein, we report the functional group modification of model single atom catalysts (SACs) with an accurately regulated electronic structure for accelerating the sluggish kinetics of the Fenton-like reaction. The amino-modified cobalt phthalocyanine anchored on graphene (CoPc/G-NH2) shows superior catalytic performance in the peroxymonosulfate (PMS) based Fenton-like reaction with Co mass-normalized pseudo-first-order reaction rate constants (kobs, 0.2935 min-1), which is increased by 4 and 163 times compared to those of CoPc/G (0.0737 min-1) and Co3O4/G (0.0018 min-1). Density functional theory (DFT) calculations demonstrate that the modification of the -NH2 group narrows the gap between the d-band center and the Fermi level of a single Co atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for the activation of PMS. Moreover, the scale-up experiment realizes 100% phenol removal at 7200-bed volumes during 240 h continuous operation without obvious decline in catalytic performance. This work provides in-depth insight into the catalytic mechanism of Fenton-like reactions and demonstrates the electronic engineering of SACs as an effective strategy for improving the Fenton-like activity to achieve the goal of practical application.


Subject(s)
Electronics , Environmental Pollutants , Catalysis , Cobalt
15.
Nat Commun ; 14(1): 5037, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596269

ABSTRACT

Optical cavities are essential for enhancing the sensitivity of molecular absorption spectroscopy, which finds widespread high-sensitivity gas sensing applications. However, the use of high-finesse cavities confines the wavelength range of operation and prevents broader applications. Here, we take a different approach to ultrasensitive molecular spectroscopy, namely dual-comb optomechanical spectroscopy (DCOS), by integrating the high-resolution multiplexing capabilities of dual-comb spectroscopy with cavity optomechanics through photoacoustic coupling. By exciting the molecules photoacoustically with dual-frequency combs and sensing the molecular-vibration-induced ultrasound waves with a cavity-coupled mechanical resonator, we measure high-resolution broadband ( > 2 THz) overtone spectra for acetylene gas and obtain a normalized noise equivalent absorption coefficient of 1.71 × 10-11 cm-1·W·Hz-1/2 with 30 GHz simultaneous spectral bandwidth. Importantly, the optomechanical resonator allows broadband dual-comb excitation. Our approach not only enriches the practical applications of the emerging cavity optomechanics technology but also offers intriguing possibilities for multi-species trace gas detection.

16.
Cell Commun Signal ; 21(1): 182, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488602

ABSTRACT

Cell migration is a highly orchestrated process requiring the coordination between the cytoskeleton, cell membrane and extracellular matrix adhesions. Our previous study demonstrated that Hax1 interacts with EB2, a microtubule end-binding protein, and this interaction regulate cell migration in keratinocytes. However, little is known about the underlying regulatory mechanism. Here, we show that Hax1 links dynamic focal adhesions to regulate cell migration via interacting with IQGAP1, a multidomain scaffolding protein, which was identified by affinity purification coupled with LC-MS/MS. Biochemical characterizations revealed that C-terminal region of Hax1 and RGCT domain of IQGAP1 are the most critical binding determinants for its interaction. IQGAP1/Hax1 interaction is essential for cell migration in MCF7 cells. Knockdown of HAX1 not only stabilizes focal adhesions, but also impairs the accumulation of IQGAP in focal adhesions. Further study indicates that this interaction is critical for maintaining efficient focal adhesion turnover. Perturbation of the IQGAP1/Hax1 interaction in vivo using a membrane-permeable TAT-RGCT peptide results in impaired focal adhesion turnover, thus leading to inhibition of directional cell migration. Together, our findings unravel a novel interaction between IQGAP1 and Hax1, suggesting that IQGAP1 association with Hax1 plays a significant role in focal adhesion turnover and directional cell migration. Video Abstract.


Subject(s)
Focal Adhesions , Tandem Mass Spectrometry , Chromatography, Liquid , Cell Membrane
17.
Ann Nucl Med ; 37(8): 433-441, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37393373

ABSTRACT

Primary aldosteronism (PA) is the most common cause of secondary hypertension. It predisposes to adverse outcomes such as nephrotoxicity and cardiovascular damage, which are mediated by direct harm from hypertension to the target organs. Accurate subtype diagnosis and localization are crucial elements in choosing the type of treatment for PA in clinical practice since the dominant side of aldosterone secretion in PA affects subsequent treatment options. The gold standard for diagnosing PA subtypes, adrenal venous sampling (AVS), requires specialized expertise, the invasive nature of the procedure and high costs, all of which delay the effective treatment of PA. Nuclide molecular imaging is non-invasive and has wider applications in the diagnosis and treatment of PA. This review aims to provide a summary of the application of radionuclide imaging in the diagnosis, treatment management and prognostic assessment of PA.


Subject(s)
Hyperaldosteronism , Hypertension , Humans , Hyperaldosteronism/diagnostic imaging , Hyperaldosteronism/etiology , Adrenal Glands/blood supply , Aldosterone , Tomography, X-Ray Computed , Hypertension/complications , Molecular Imaging
18.
J Am Chem Soc ; 145(28): 15600-15610, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37418344

ABSTRACT

Single-atom catalysts with a well-defined metal center open unique opportunities for exploring the catalytically active site and reaction mechanism of chemical reactions. However, understanding of the electronic and structural dynamics of single-atom catalytic centers under reaction conditions is still limited due to the challenge of combining operando techniques that are sensitive to such sites and model single-atom systems. Herein, supported by state-of-the-art operando techniques, we provide an in-depth study of the dynamic structural and electronic evolution during the electrochemical CO2 reduction reaction (CO2RR) of a model catalyst comprising iron only as a high-spin (HS) Fe(III)N4 center in its resting state. Operando 57Fe Mössbauer and X-ray absorption spectroscopies clearly evidence the change from a HS Fe(III)N4 to a HS Fe(II)N4 center with decreasing potential, CO2- or Ar-saturation of the electrolyte, leading to different adsorbates and stability of the HS Fe(II)N4 center. With operando Raman spectroscopy and cyclic voltammetry, we identify that the phthalocyanine (Pc) ligand coordinating the iron cation center undergoes a redox process from Fe(II)Pc to Fe(II)Pc-. Altogether, the HS Fe(II)Pc- species is identified as the catalytic intermediate for CO2RR. Furthermore, theoretical calculations reveal that the electroreduction of the Pc ligand modifies the d-band center of the in situ generated HS Fe(II)Pc- species, resulting in an optimal binding strength to CO2 and thus boosting the catalytic performance of CO2RR. This work provides both experimental and theoretical evidence toward the electronic structural and dynamics of reactive sites in single-Fe-atom materials and shall guide the design of novel efficient catalysts for CO2RR.

19.
Nat Commun ; 14(1): 3401, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296132

ABSTRACT

While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C-O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO- species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.


Subject(s)
Carbon Dioxide , Methanol , Spectroscopy, Fourier Transform Infrared , Adsorption , Carbon
20.
Drug Dev Res ; 84(6): 1114-1126, 2023 09.
Article in English | MEDLINE | ID: mdl-37154105

ABSTRACT

Our previous work reported that galaxamide, a cyclopeptide extracted from the seaweed Galaxaura filamentosa, showed antiproliferative activity against HeLa cells by MTT assay. In this study, the growth-inhibitory effects of galaxamide in HeLa cells and xenograft mouse models were investigated. It was found galaxamide significantly inhibited cell growth, colony formation, migration, and invasion and induced cell apoptosis by inhibiting the Wnt signaling pathway in HeLa cells. RNA sequencing revealed that galaxamide regulated stemness by Wnt6 signaling pathway in HeLa cells. By analyzing The Cancer Genome Atlas database, Wnt6 was found to be negatively/positively correlated with stemness- and apoptosis-related genes in human cervical cancer. Cancer stem-like cells (CSCs) isolated and enriched from HeLa cells demonstrated elevated Wnt6 and ß-catenin genes compared with nonstem HeLa cells. After galaxamide treatment, CSCs showed abrogation of sphere-forming ability, along with inhibition of stemness-related and Wnt pathway genes. Galaxamide treatment was also accompanied by the induction of apoptosis in HeLa cells, which was consistent with the results in BALB/c nude mice. Our results provide evidence that suppression of stemness by downregulating the Wnt signaling pathway is the molecular mechanism by which galaxamide effectively inhibits cell growth and induces apoptosis in cervical cancer cells.


Subject(s)
Uterine Cervical Neoplasms , Wnt Signaling Pathway , Female , Humans , Animals , Mice , HeLa Cells , beta Catenin/genetics , Uterine Cervical Neoplasms/genetics , Mice, Nude , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Apoptosis , Cell Proliferation , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL