Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
NAR Genom Bioinform ; 6(1): lqae001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38288374

ABSTRACT

Functional precision medicine (FPM) aims to optimize patient-specific drug selection based on the unique characteristics of their cancer cells. Recent advancements in high throughput ex vivo drug profiling have accelerated interest in FPM. Here, we present a proof-of-concept study for an integrated experimental system that incorporates ex vivo treatment response with a single-cell gene expression output enabling barcoding of several drug conditions in one single-cell sequencing experiment. We demonstrate this through a proof-of-concept investigation focusing on the glucocorticoid-resistant acute lymphoblastic leukemia (ALL) E/R+ Reh cell line. Three different single-cell transcriptome sequencing (scRNA-seq) approaches were evaluated, each exhibiting high cell recovery and accurate tagging of distinct drug conditions. Notably, our comprehensive analysis revealed variations in library complexity, sensitivity (gene detection), and differential gene expression detection across the methods. Despite these differences, we identified a substantial transcriptional response to fludarabine, a highly relevant drug for treating high-risk ALL, which was consistently recapitulated by all three methods. These findings highlight the potential of our integrated approach for studying drug responses at the single-cell level and emphasize the importance of method selection in scRNA-seq studies. Finally, our data encompassing 27 327 cells are freely available to extend to future scRNA-seq methodological comparisons.

2.
Nature ; 619(7971): 793-800, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380777

ABSTRACT

Aneuploidies-whole-chromosome or whole-arm imbalances-are the most prevalent alteration in cancer genomes1,2. However, it is still debated whether their prevalence is due to selection or ease of generation as passenger events1,2. Here we developed a method, BISCUT, that identifies loci subject to fitness advantages or disadvantages by interrogating length distributions of telomere- or centromere-bounded copy-number events. These loci were significantly enriched for known cancer driver genes, including genes not detected through analysis of focal copy-number events, and were often lineage specific. BISCUT identified the helicase-encoding gene WRN as a haploinsufficient tumour-suppressor gene on chromosome 8p, which is supported by several lines of evidence. We also formally quantified the role of selection and mechanical biases in driving aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with their effects on cellular fitness1,2. These results provide insight into the driving forces behind aneuploidy and its contribution to tumorigenesis.


Subject(s)
Aneuploidy , Cell Transformation, Neoplastic , Neoplasms , Humans , Cell Transformation, Neoplastic/genetics , DNA Copy Number Variations/genetics , Neoplasms/genetics , Neoplasms/pathology , Oncogenes/genetics , Telomere/genetics , Centromere/genetics , Cell Lineage , Chromosomes, Human, Pair 8/genetics , Genes, Tumor Suppressor
3.
Biochem Pharmacol ; 203: 115184, 2022 09.
Article in English | MEDLINE | ID: mdl-35872325

ABSTRACT

Loss of heterozygosity (LOH) is a hallmark feature of cancer genomes that reduces allelic variation, thereby creating tumor specific vulnerabilities which could be exploited for therapeutic purposes. We previously reported that loss of drug metabolic arylamine N-acetyltransferase 2 (NAT2) activity following LOH at 8p22 could be targeted for collateral lethality anticancer therapy in colorectal cancer (CRC). Here, we report a novel compound CBK034026C that exhibits specific toxicity towards CRC cells with high NAT2 activity. Connectivity Map analysis revealed that CBK034026C elicited a response pattern related to ATPase inhibitors. Similar to ouabain, a potent inhibitor of the Na+/K+-ATPase, CBK034026C activated the Nf-kB pathway. Further metabolomic profiling revealed downregulation of pathways associated with antioxidant defense and mitochondrial metabolism in CRC cells with high NAT2 activity, thereby weakening the protective response to oxidative stress induced by CBK034026C. The identification of a small molecule targeting metabolic vulnerabilities caused by NAT2 activity provides novel avenues for development of anticancer agents.


Subject(s)
Antineoplastic Agents , Arylamine N-Acetyltransferase , Colorectal Neoplasms , Acetyltransferases/genetics , Adenosine Triphosphatases , Alleles , Antineoplastic Agents/pharmacology , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans
4.
Nat Commun ; 13(1): 604, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105861

ABSTRACT

The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.


Subject(s)
Glioma/genetics , Mutation , Oncogenes/genetics , Protein Phosphatase 2C/genetics , Adolescent , Adult , Animals , Brain Stem Neoplasms/genetics , Carcinogenesis/genetics , Cell Cycle , Child , Child, Preschool , DNA Damage , Disease Models, Animal , Female , HEK293 Cells , Humans , Infant , Male , Mice , Proto-Oncogene Proteins c-mdm2 , Transcriptome , Tumor Suppressor Protein p53/genetics , Young Adult
5.
J Exp Clin Cancer Res ; 40(1): 225, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34233735

ABSTRACT

BACKGROUND: Genes in the Ras pathway have somatic mutations in at least 60 % of colorectal cancers. Despite activating the same pathway, the BRAF V600E mutation and the prevalent mutations in codon 12 and 13 of KRAS have all been linked to different clinical outcomes, but the molecular mechanisms behind these differences largely remain to be clarified. METHODS: To characterize the similarities and differences between common activating KRAS mutations and between KRAS and BRAF mutations, we used genome editing to engineer KRAS G12C/D/V and G13D mutations in colorectal cancer cells that had their mutant BRAF V600E allele removed and subjected them to transcriptome sequencing, global proteomics and metabolomics analyses. RESULTS: By intersecting differentially expressed genes, proteins and metabolites, we uncovered (i) two-fold more regulated genes and proteins when comparing KRAS to BRAF mutant cells to those lacking Ras pathway mutation, (ii) five differentially expressed proteins in KRAS mutants compared to cells lacking Ras pathway mutation (IFI16, S100A10, CD44, GLRX and AHNAK2) and 6 (CRABP2, FLNA, NXN, LCP1, S100A10 and S100A2) compared to BRAF mutant cells, (iii) 19 proteins expressed differentially in a KRAS mutation specific manner versus BRAF V600E cells, (iv) regulation of the Integrin Linked Kinase pathway by KRAS but not BRAF mutation, (v) regulation of amino acid metabolism, particularly of the tyrosine, histidine, arginine and proline pathways, the urea cycle and purine metabolism by Ras pathway mutations, (vi) increased free carnitine in KRAS and BRAF mutant RKO cells. CONCLUSIONS: This comprehensive integrative -omics analysis confirms known and adds novel genes, proteins and metabolic pathways regulated by mutant KRAS and BRAF signaling in colorectal cancer. The results from the new model systems presented here can inform future development of diagnostic and therapeutic approaches targeting tumors with KRAS and BRAF mutations.


Subject(s)
Colorectal Neoplasms/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Phenotype , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism
6.
Mol Cell ; 81(12): 2583-2595.e6, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33961797

ABSTRACT

53BP1 influences genome stability via two independent mechanisms: (1) regulating DNA double-strand break (DSB) repair and (2) enhancing p53 activity. We discovered a protein, Tudor-interacting repair regulator (TIRR), that associates with the 53BP1 Tudor domain and prevents its recruitment to DSBs. Here, we elucidate how TIRR affects 53BP1 function beyond its recruitment to DSBs and biochemically links the two distinct roles of 53BP1. Loss of TIRR causes an aberrant increase in the gene transactivation function of p53, affecting several p53-mediated cell-fate programs. TIRR inhibits the complex formation between the Tudor domain of 53BP1 and a dimethylated form of p53 (K382me2) that is poised for transcriptional activation of its target genes. TIRR mRNA expression levels negatively correlate with the expression of key p53 target genes in breast and prostate cancers. Further, TIRR loss is selectively not tolerated in p53-proficient tumors. Therefore, we establish that TIRR is an important inhibitor of the 53BP1-p53 complex.


Subject(s)
Cell Lineage/genetics , RNA-Binding Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Binding Sites , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Lineage/physiology , DNA/genetics , DNA Breaks, Double-Stranded , DNA Repair , Histones/metabolism , Humans , Protein Binding , RNA-Binding Proteins/physiology , Tudor Domain , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor p53-Binding Protein 1/physiology
7.
Cancer Cell ; 39(3): 285-287, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33689700

ABSTRACT

March 8 is International Women's Day. Women, particularly women of color, are still underrepresented in science and medical careers and face severe health disparities. To commemorate this day, we asked female cancer researchers and oncologists to talk about their work experiences and their efforts to improve equity, representation, and leadership.


Subject(s)
Biomedical Research/methods , Medical Oncology/methods , Female , Humans , Leadership
8.
Mol Cell Oncol ; 7(4): 1759390, 2020.
Article in English | MEDLINE | ID: mdl-32944621

ABSTRACT

We show that N-acetyltransferase 2 (NAT2) loss of heterozygosity can be targeted in >4% of colorectal cancers with the use of a small molecule. We identify and describe the effect of a compound that impairs the growth of colorectal tumors with slow NAT2 activity by half when compared to wild-type.

9.
Mol Cell Oncol ; 7(5): 1789419, 2020.
Article in English | MEDLINE | ID: mdl-32944644

ABSTRACT

We investigated the genetic and transcriptional changes associated with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated protein 9 (Cas9) expression in human cancer cell lines. For a subset of cell lines with a wild-type tumor protein TP53 (best known as p53), we detected p53 pathway activation, DNA damage accumulation and emerging p53-inactivating mutations following Cas9 introduction. We discuss the potential implications of our findings in basic and translational research.

10.
Angew Chem Int Ed Engl ; 59(34): 14342-14346, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32497306

ABSTRACT

N-Acetyltransferases play critical roles in the deactivation and clearance of xenobiotics, including clinical drugs. NAT2 has been classified as an arylamine N-acetyltransferase that mainly converts aromatic amines, hydroxylamines, and hydrazines. Herein, we demonstrate that the human arylamine N-acetyltransferase NAT2 also acetylates aliphatic endogenous amines. Metabolomic analysis and chemical synthesis revealed increased intracellular concentrations of mono- and diacetylated spermidine in human cell lines expressing the rapid compared to the slow acetylator NAT2 phenotype. The regioselective N8 -acetylation of monoacetylated spermidine by NAT2 answers the long-standing question of the source of diacetylspermidine. We also identified selective acetylation of structurally diverse alkylamine-containing drugs by NAT2, which may contribute to variations in patient responses. The results demonstrate a previously unknown functionality and potential regulatory role for NAT2, and we suggest that this enzyme should be considered for re-classification.


Subject(s)
Amines/metabolism , Arylamine N-Acetyltransferase/metabolism , Acetylation , Arylamine N-Acetyltransferase/genetics , Cell Line, Tumor , Chromatography, Liquid/methods , Genotype , Humans , Kinetics , Mass Spectrometry/methods
11.
12.
Nat Genet ; 52(7): 662-668, 2020 07.
Article in English | MEDLINE | ID: mdl-32424350

ABSTRACT

Cas9 is commonly introduced into cell lines to enable CRISPR-Cas9-mediated genome editing. Here, we studied the genetic and transcriptional consequences of Cas9 expression itself. Gene expression profiling of 165 pairs of human cancer cell lines and their Cas9-expressing derivatives revealed upregulation of the p53 pathway upon introduction of Cas9, specifically in wild-type TP53 (TP53-WT) cell lines. This was confirmed at the messenger RNA and protein levels. Moreover, elevated levels of DNA repair were observed in Cas9-expressing cell lines. Genetic characterization of 42 cell line pairs showed that introduction of Cas9 can lead to the emergence and expansion of p53-inactivating mutations. This was confirmed by competition experiments in isogenic TP53-WT and TP53-null (TP53-/-) cell lines. Lastly, Cas9 was less active in TP53-WT than in TP53-mutant cell lines, and Cas9-induced p53 pathway activation affected cellular sensitivity to both genetic and chemical perturbations. These findings may have broad implications for the proper use of CRISPR-Cas9-mediated genome editing.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Mutation , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , DNA Mutational Analysis , Humans , Metabolic Networks and Pathways , Streptococcus pyogenes/enzymology , Transcription, Genetic , Transcriptome
13.
Nat Commun ; 11(1): 1308, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161261

ABSTRACT

Cancer chemotherapy targeting frequent loss of heterozygosity events is an attractive concept, since tumor cells may lack enzymatic activities present in normal constitutional cells. To find exploitable targets, we map prevalent genetic polymorphisms to protein structures and identify 45 nsSNVs (non-synonymous small nucleotide variations) near the catalytic sites of 17 enzymes frequently lost in cancer. For proof of concept, we select the gastrointestinal drug metabolic enzyme NAT2 at 8p22, which is frequently lost in colorectal cancers and has a common variant with 10-fold reduced activity. Small molecule screening results in a cytotoxic kinase inhibitor that impairs growth of cells with slow NAT2 and decreases the growth of tumors with slow NAT2 by half as compared to those with wild-type NAT2. Most of the patient-derived CRC cells expressing slow NAT2 also show sensitivity to 6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine (APA) treatment. These findings indicate that the therapeutic index of anti-cancer drugs can be altered by bystander mutations affecting drug metabolic genes.


Subject(s)
Antineoplastic Agents/pharmacology , Arylamine N-Acetyltransferase/genetics , Colorectal Neoplasms/drug therapy , Loss of Heterozygosity , Protein Kinase Inhibitors/pharmacology , Alleles , Animals , Antineoplastic Agents/therapeutic use , Arylamine N-Acetyltransferase/metabolism , Bystander Effect/genetics , Case-Control Studies , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Female , HCT116 Cells , Humans , Isoenzymes/metabolism , Mice , Mice, Nude , Polymorphism, Genetic , Protein Kinase Inhibitors/therapeutic use , Small Molecule Libraries , Xenograft Model Antitumor Assays
14.
Sci Rep ; 10(1): 22436, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33384440

ABSTRACT

Therapies targeting somatic bystander genetic events represent a new avenue for cancer treatment. We recently identified a subset of colorectal cancer (CRC) patients who are heterozygous for a wild-type and a low activity allele (NAT2*6) but lack the wild-type allele in their tumors due to loss of heterozygosity (LOH) at 8p22. These tumors were sensitive to treatment with a cytotoxic substrate of NAT2 (6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine, APA), and pointed to NAT2 loss being a therapeutically exploitable vulnerability of CRC tumors. To better estimate the total number of treatable CRC patients, we here determined whether tumor cells retaining also other NAT2 low activity variants after LOH respond to APA treatment. The prevalent low activity alleles NAT2*5 and NAT2*14, but not NAT2*7, were found to be low metabolizers with high sensitivity to APA. By analysis of two different CRC patient cohorts, we detected heterozygosity for NAT2 alleles targetable by APA, along with allelic imbalances pointing to LOH, in ~ 24% of tumors. Finally, to haplotype the NAT2 locus in tumor and patient-matched normal samples in a clinical setting, we develop and demonstrate a long-read sequencing based assay. In total, > 79.000 CRC patients per year fulfil genetic criteria for high sensitivity to a NAT2 LOH therapy and their eligibility can be assessed by clinical sequencing.


Subject(s)
Alleles , Antineoplastic Agents/therapeutic use , Arylamine N-Acetyltransferase/antagonists & inhibitors , Arylamine N-Acetyltransferase/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Enzyme Inhibitors/therapeutic use , Molecular Targeted Therapy , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Enzyme Inhibitors/pharmacology , Gene Frequency , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Single Molecule Imaging
15.
Oncotarget ; 8(58): 98646-98659, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29228717

ABSTRACT

The chromatin modifier PRDM2/RIZ1 is inactivated by mutation in several forms of cancer and is a putative tumor suppressor gene. Frameshift mutations in the C-terminal region of PRDM2, affecting (A)8 or (A)9 repeats within exon 8, are found in one third of colorectal cancers with microsatellite instability, but the contribution of these mutations to colorectal tumorigenesis is unknown. To model somatic mutations in microsatellite unstable tumors, we devised a general approach to perform genome editing while stabilizing the mutated nucleotide repeat. We then engineered isogenic cell systems where the PRDM2 c.4467delA mutation in human HCT116 colorectal cancer cells was corrected to wild-type by genome editing. Restored PRDM2 increased global histone 3 lysine 9 dimethylation and reduced migration, anchorage-independent growth and tumor growth in vivo. Gene set enrichment analysis revealed regulation of several hallmark cancer pathways, particularly of epithelial-to-mesenchymal transition (EMT), with VIM being the most significantly regulated gene. These observations provide direct evidence that PRDM2 c.4467delA is a driver mutation in colorectal cancer and confirms PRDM2 as a cancer gene, pointing to regulation of EMT as a central aspect of its tumor suppressive action.

16.
Cancer Res ; 77(7): 1730-1740, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28108514

ABSTRACT

The contribution of somatic mutations to metastasis of colorectal cancers is currently unknown. To find mutations involved in the colorectal cancer metastatic process, we performed deep mutational analysis of 676 genes in 107 stages II to IV primary colorectal cancer, of which half had metastasized. The mutation prevalence in the ephrin (EPH) family of tyrosine kinase receptors was 10-fold higher in primary tumors of metastatic colorectal than in nonmetastatic cases and preferentially occurred in stage III and IV tumors. Mutational analyses in situ confirmed expression of mutant EPH receptors. To enable functional studies of EPHB1 mutations, we demonstrated that DLD-1 colorectal cancer cells expressing EPHB1 form aggregates upon coculture with ephrin B1 expressing cells. When mutations in the fibronectin type III and kinase domains of EPHB1 were compared with wild-type EPHB1 in DLD-1 colorectal cancer cells, they decreased ephrin B1-induced compartmentalization. These observations provide a mechanistic link between EPHB receptor mutations and metastasis in colorectal cancer. Cancer Res; 77(7); 1730-40. ©2017 AACR.


Subject(s)
Colorectal Neoplasms/pathology , Mutation , Neoplasm Metastasis , Receptor, EphB1/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Fibronectin Type III Domain/genetics , Humans , Neoplasm Staging , Protein-Tyrosine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL