Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
iScience ; 27(6): 109909, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38812539

ABSTRACT

Small intestine (SI) maturation during early life is pivotal in preventing the onset of gut diseases. In this study we interrogated the milestones of SI development by gene expression profiling and ingenuity pathway analyses. We identified a set of cytokines as main regulators of changes observed across different developmental stages. Upon cytokines stimulation, with IFNγ as the most contributing factor, human fetal organoids (HFOs) increase brush border gene expression and enzyme activity as well as trans-epithelial electrical resistance. Electron microscopy revealed developed brush border and loss of fetal cell characteristics in HFOs upon cytokine stimulation. We identified T cells as major source of IFNγ production in the fetal SI lamina propria. Co-culture of HFOs with T cells recapitulated the major effects of cytokine stimulation. Our findings underline pro-inflammatory cytokines derived from T cells as pivotal factors inducing functional SI maturation in vivo and capable of modulating the barrier maturation of HFOs in vitro.

2.
Food Funct ; 13(10): 5715-5729, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35522150

ABSTRACT

Knowledge about how molecular properties of proteins affect their digestion kinetics is crucial to understand protein postprandial plasma amino acid (AA) responses. Previously it was found that a native whey protein isolate (NWPI) and heat denatured whey protein isolate (DWPI) elicit comparable postprandial plasma AA peak concentrations in neonatal piglets, while a protein base ingredient for infant formula (PBI, a ß-casein-native whey protein mixture) caused a 39% higher peak AA concentration than NWPI. We hypothesized that both whey protein denaturation by heat as well as changing protein composition by including ß-casein, increases the rate of intact protein loss, and that changing the protein composition (by including ß-casein), but not whey protein denaturation, yields a faster absorbable product release. Therefore NWPI (91% native), DWPI (91% denatured) and PBI hydrolysis was investigated in a semi-dynamic in vitro digestion model (SIM). NWPI and DWPI hydrolysis were also compared in a dynamic digestion model with dialysis (TIM-1) to exclude potential product inhibition effects that may occur in a closed vessel digestion model as SIM. In both models, the degree of hydrolysis (DH), loss of intact protein, and release of absorbable products (SIM: <0.5 kDa peptides and free AA, TIM-1: bioaccessible AA) were monitored. Additionally, in SIM, intermediate product amounts and their characteristics were determined. DWPI showed considerably faster intact protein loss, but similar DH and absorbable product release kinetics compared with NWPI in both models. Furthermore, more, relatively large, intermediate products were released from DWPI than from NWPI. PBI showed increased intact protein loss, similar DH, and absorbable product release kinetics, but more, relatively small, intermediate products than NWPI. In conclusion, both whey protein denaturation and ß-casein inclusion increased the rate of intact protein loss without affecting absorbable product release during in vitro digestion. Our results suggest that intermediate digestion product characteristics are important in relation to postprandial AA responses.


Subject(s)
Caseins , Milk Proteins , Animals , Caseins/chemistry , Digestion , Hot Temperature , Humans , Kinetics , Milk Proteins/chemistry , Proteolysis , Swine , Whey Proteins/metabolism
3.
Nutrients ; 14(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35406125

ABSTRACT

The postprandial plasma essential amino acid (AA) peak concentrations of infant formula (IF) are higher than those of human milk (HM) in infants. In addition, several HM proteins have been recovered intact in infant stool and appeared digestion resistant in vitro. We, therefore, hypothesized that gastrointestinal protein hydrolysis of IF is faster than HM and leads to accelerated absorbable digestion product release. HM and IF protein hydrolysis kinetics were compared in a two-step semi-dynamic in vitro infant digestion model, and the time course of degree of protein hydrolysis (DH), loss of intact protein, and release of free AA and peptides was evaluated. Gastric DH increase was similar for IF and HM, but the rate of intestinal DH increase was 1.6 times higher for IF than HM. Intact protein loss in IF was higher than HM from 120 min gastric phase until 60 min intestinal phase. Intestinal phase total digestion product (free AA + peptides <5 kDa) concentrations increased ~2.5 times faster in IF than HM. IF gastrointestinal protein hydrolysis and absorbable product release are faster than HM, possibly due to the presence of digestion-resistant proteins in HM. This might present an opportunity to further improve IF bringing it closer to HM.


Subject(s)
Digestion , Infant Formula , Caseins/analysis , Humans , Hydrolysis , Infant , Infant Formula/chemistry , Kinetics , Milk, Human/chemistry , Peptides/analysis
4.
Antibiotics (Basel) ; 11(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35203869

ABSTRACT

The association between prolonged antibiotic (AB) use in neonates and increased incidence of later life diseases is not yet fully understood. AB treatment in early life alters intestinal epithelial cell composition, functioning, and maturation, which could be the basis for later life health effects. Here, we investigated whether AB-induced changes in the neonatal gut persisted up to adulthood and whether early life AB had additional long-term consequences for gut functioning. Mice received AB orally from postnatal day 10 to 20. Intestinal morphology, permeability, and gene and protein expression at 8 weeks were analyzed. Our data showed that the majority of the early life AB-induced gut effects did not persist into adulthood, yet early life AB did impact later life gut functioning. Specifically, the proximal small intestine (SI) of adult mice treated with AB in early life was characterized by hyperproliferative crypts, increased number of Paneth cells, and alterations in enteroendocrine cell-specific gene expression profiles. The distal SI of adult mice displayed a reduced expression of antibacterial defense markers. Together, our results suggest that early life AB leads to structural and physiological changes in the adult gut, which may contribute to disease development when homeostatic conditions are under challenge.

5.
Cell Mol Gastroenterol Hepatol ; 12(3): 943-981, 2021.
Article in English | MEDLINE | ID: mdl-34102314

ABSTRACT

BACKGROUND & AIMS: The use of antibiotics (ABs) is a common practice during the first months of life. ABs can perturb the intestinal microbiota, indirectly influencing the intestinal epithelial cells (IECs), but can also directly affect IECs independent of the microbiota. Previous studies have focused mostly on the impact of AB treatment during adulthood. However, the difference between the adult and neonatal intestine warrants careful investigation of AB effects in early life. METHODS: Neonatal mice were treated with a combination of amoxicillin, vancomycin, and metronidazole from postnatal day 10 to 20. Intestinal permeability and whole-intestine gene and protein expression were analyzed. IECs were sorted by a fluorescence-activated cell sorter and their genome-wide gene expression was analyzed. Mouse fetal intestinal organoids were treated with the same AB combination and their gene and protein expression and metabolic capacity were determined. RESULTS: We found that in vivo treatment of neonatal mice led to decreased intestinal permeability and a reduced number of specialized vacuolated cells, characteristic of the neonatal period and necessary for absorption of milk macromolecules. In addition, the expression of genes typically present in the neonatal intestinal epithelium was lower, whereas the adult gene expression signature was higher. Moreover, we found altered epithelial defense and transepithelial-sensing capacity. In vitro treatment of intestinal fetal organoids with AB showed that part of the consequences observed in vivo is a result of the direct action of the ABs on IECs. Lastly, ABs reduced the metabolic capacity of intestinal fetal organoids. CONCLUSIONS: Our results show that early life AB treatment induces direct and indirect effects on IECs, influencing their maturation and functioning.


Subject(s)
Amoxicillin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Gene Regulatory Networks/drug effects , Intestines/metabolism , Metronidazole/administration & dosage , Vancomycin/administration & dosage , Amoxicillin/adverse effects , Animals , Animals, Newborn , Anti-Bacterial Agents/adverse effects , Disease Models, Animal , Enterocytes/cytology , Enterocytes/drug effects , Enterocytes/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Intestines/cytology , Intestines/drug effects , Metronidazole/adverse effects , Mice , Oligonucleotide Array Sequence Analysis , Permeability/drug effects , Postnatal Care , Vacuoles/drug effects , Vacuoles/metabolism , Vancomycin/adverse effects
6.
Sci Rep ; 11(1): 12808, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140588

ABSTRACT

Functionality of the gastrointestinal tract is essential for growth and development of newborns. Preterm infants have an immature gastrointestinal tract, which is a major challenge in neonatal care. This study aims to improve the understanding of gastrointestinal functionality and maturation during the early life of preterm infants by means of gastrointestinal enzyme activity assays and metaproteomics. In this single-center, observational study, preterm infants born between 24 and 33 weeks (n = 40) and term infants born between 37 and 42 weeks (n = 3), who were admitted to Isala (Zwolle, the Netherlands), were studied. Enzyme activity analyses identified active proteases in gastric aspirates of preterm infants. Metaproteomics revealed human milk, digestive and immunological proteins in gastric aspirates of preterm infants and feces of preterm and term infants. The fecal proteome of preterm infants was deprived of gastrointestinal barrier-related proteins during the first six postnatal weeks compared to term infants. In preterm infants, bacterial oxidative stress proteins were increased compared to term infants and higher birth weight correlated to higher relative abundance of bifidobacterial proteins in postnatal week 3 to 6. Our findings indicate that gastrointestinal and beneficial microbial proteins involved in gastrointestinal maturity are associated with gestational and postnatal age.


Subject(s)
Bacteria/metabolism , Biomarkers/metabolism , Digestion/physiology , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/microbiology , Infant, Premature/physiology , Animals , Cattle , Gastrointestinal Tract/enzymology , Humans , Hydrogen-Ion Concentration , Infant, Newborn , Milk Proteins/metabolism , Oxidative Stress , Peptide Hydrolases/metabolism , Proteome/metabolism , Proteomics , Time Factors
7.
Nutrients ; 12(11)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158188

ABSTRACT

Human milk is the optimal diet for infant development, but infant milk formula (IMF) must be available as an alternative. To develop high-quality IMF, bovine milk processing is required to ensure microbial safety and to obtain a protein composition that mimics human milk. However, processing can impact the quality of milk proteins, which can influence gastro-intestinal (GI) tolerance by changing digestion, transit time and/or absorption. The aim of this study was to evaluate the impact of structural changes of proteins due to thermal processing on gastro-intestinal tolerance in the immature GI tract. Preterm and near-term piglets received enteral nutrition based on whey protein concentrate (WPC) either mildly pasteurized (MP-WPC) or extensively heated (EH-WPC). Clinical symptoms, transit time and gastric residuals were evaluated. In addition, protein coagulation and protein composition of coagulates formed during in vitro digestion were analyzed in more detail. Characterization of MP-WPC and EH-WPC revealed that mild pasteurization maintained protein nativity and reduced aggregation of ß-lactoglobulin and α-lactalbumin, relative to EH-WPC. Mild pasteurization reduced the formation of coagulates during digestion, resulting in reduced gastric residual volume and increased intestinal tract content. In addition, preterm piglets receiving MP-WPC showed reduced mucosal bacterial adherence in the proximal small intestine. Finally, in vitro digestion studies revealed less protein coagulation and lower levels of ß-lactoglobulin and α-lactalbumin in the coagulates of MP-WPC compared with EH-WPC. In conclusion, minimal heat treatment of WPC compared with extensive heating promoted GI tolerance in immature piglets, implying that minimal heated WPC could improve the GI tolerance of milk formulas in infants.


Subject(s)
Gastrointestinal Tract/immunology , Hot Temperature , Immune Tolerance , Pasteurization , Whey Proteins/pharmacology , Animals , Bacterial Adhesion/drug effects , Digestion , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Gastrointestinal Transit/drug effects , Gastrointestinal Transit/physiology , Hydrogen-Ion Concentration , Immune Tolerance/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Lysine/analogs & derivatives , Lysine/metabolism , Permeability , Protein Aggregates/drug effects , Swine
8.
Curr Biol ; 30(19): 3761-3774.e6, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32822606

ABSTRACT

Birth by Caesarean (C)-section impacts early gut microbiota colonization and is associated with an increased risk of developing immune and metabolic disorders. Moreover, alterations of the microbiome have been shown to affect neurodevelopmental trajectories. However, the long-term effects of C-section on neurobehavioral processes remain unknown. Here, we demonstrated that birth by C-section results in marked but transient changes in microbiome composition in the mouse, in particular, the abundance of Bifidobacterium spp. was depleted in early life. Mice born by C-section had enduring social, cognitive, and anxiety deficits in early life and adulthood. Interestingly, we found that these specific behavioral alterations induced by the mode of birth were also partially corrected by co-housing with vaginally born mice. Finally, we showed that supplementation from birth with a Bifidobacterium breve strain, or with a dietary prebiotic mixture that stimulates the growth of bifidobacteria, reverses selective behavioral alterations in C-section mice. Taken together, our data link the gut microbiota to behavioral alterations in C-section-born mice and suggest the possibility of developing adjunctive microbiota-targeted therapies that may help to avert long-term negative consequences on behavior associated with C-section birth mode.


Subject(s)
Cesarean Section/adverse effects , Gastrointestinal Microbiome/physiology , Nervous System Diseases/microbiology , Animals , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Cesarean Section/psychology , Disease Models, Animal , Feces/microbiology , Female , Mice , Pregnancy
9.
Article in English | MEDLINE | ID: mdl-32656095

ABSTRACT

Gut organoids are stem cell derived 3D models of the intestinal epithelium that are useful for studying interactions between enteric pathogens and their host. While the organoid model has been used for both bacterial and viral infections, this is a closed system with the luminal side being inaccessible without microinjection or disruption of the organoid polarization. In order to overcome this and simplify their applicability for transepithelial studies, permeable membrane based monolayer approaches are needed. In this paper, we demonstrate a method for generating a monolayer model of the human fetal intestinal polarized epithelium that is fully characterized and validated. Proximal and distal small intestinal organoids were used to generate 2D monolayer cultures, which were characterized with respect to epithelial cell types, polarization, barrier function, and gene expression. In addition, viral replication and bacterial translocation after apical infection with enteric pathogens Enterovirus A71 and Listeria monocytogenes were evaluated, with subsequent monitoring of the pro-inflammatory host response. This human 2D fetal intestinal monolayer model will be a valuable tool to study host-pathogen interactions and potentially reduce the use of animals in research.


Subject(s)
Intestine, Small , Organoids , Animals , Epithelial Cells , Host-Pathogen Interactions , Humans , Intestinal Mucosa
10.
BMC Pediatr ; 20(1): 195, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32380969

ABSTRACT

BACKGROUND: It is important to understand the consequences of pre-emptive antibiotic treatment in neonates, as disturbances in microbiota development during this key developmental time window might affect early and later life health outcomes. Despite increasing knowledge regarding the detrimental effect of antibiotics on the gut microbiota, limited research focussed on antibiotic treatment duration. We determined the effect of short and long amoxicillin/ceftazidime administration on gut microbiota development during the immediate postnatal life of preterm and term infants. METHODS: Faeces was collected from 63 (pre) term infants at postnatal weeks one, two, three, four and six. Infants received either no (control), short-term (ST) or long-term (LT) postpartum amoxicillin/ceftazidime treatment. RESULTS: Compared to control infants, ST and LT infants' microbiota contained significantly higher abundance of Enterococcus during the first two postnatal weeks at the expense of Bifidobacterium and Streptococcus. Short and long antibiotic treatment both allowed for microbiota restoration within the first six postnatal weeks. However, Enterococcus and Bifidobacterium abundances were affected in fewer ST than LT infants. CONCLUSIONS: Intravenous amoxicillin/ceftazidime administration affects intestinal microbiota composition by decreasing the relative abundance of Escherichia-Shigella and Streptococcus, while increasing the relative abundance of Enterococcus and Lactobacillus species during the first two postnatal weeks. Thriving of enterococci at the expense of bifidobacteria and streptococci should be considered as aspect of the cost-benefit determination for antibiotic prescription.


Subject(s)
Gastrointestinal Microbiome , Amoxicillin , Ceftazidime , Feces , Female , Humans , Infant , Infant, Newborn , Infant, Premature , RNA, Ribosomal, 16S
11.
Nutrients ; 12(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316586

ABSTRACT

BACKGROUND: The human digestive tract is structurally mature at birth, yet maturation of gut functions such as digestion and mucosal barrier continues for the next 1-2 years. Human milk and infant milk formulas (IMF) seem to impact maturation of these gut functions differently, which is at least partially related to high temperature processing of IMF causing loss of bioactive proteins and formation of advanced glycation end products (AGEs). Both loss of protein bioactivity and formation of AGEs depend on heating temperature and time. The aim of this study was to investigate the impact of mildly pasteurized whey protein concentrate (MP-WPC) compared to extensively heated WPC (EH-WPC) on gut maturation in a piglet model hypersensitive to enteral nutrition. METHODS: WPC was obtained by cold filtration and mildly pasteurized (73 °C, 30 s) or extensively heat treated (73 °C, 30 s + 80 °C, 6 min). Preterm (~90% gestation) and near-term piglets (~96% gestation) received enteral nutrition based on MP-WPC or EH-WPC for five days. Macroscopic and histologic lesions in the gastro-intestinal tract were evaluated and intestinal responses were further assessed by RT-qPCR, immunohistochemistry and enzyme activity analysis. RESULTS: A diet based on MP-WPC limited epithelial intestinal damage and improved colonic integrity compared to EH-WPC. MP-WPC dampened colonic IL1-ß, IL-8 and TNF-α expression and lowered T-cell influx in both preterm and near-term piglets. Anti-microbial defense as measured by neutrophil influx in the colon was only observed in near-term piglets, correlated with histological damage and was reduced by MP-WPC. Moreover, MP-WPC stimulated iALP activity in the colonic epithelium and increased differentiation into enteroendocrine cells compared to EH-WPC. CONCLUSIONS: Compared to extensively heated WPC, a formula based on mildly pasteurized WPC limits gut inflammation and stimulates gut maturation in preterm and near-term piglets and might therefore also be beneficial for preterm and (near) term infants.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Animals, Newborn , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/metabolism , Pasteurization/methods , Premature Birth , Swine/immunology , Swine/physiology , Whey Proteins/pharmacology , Animals , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Hot Temperature , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Neutrophil Infiltration , Swine/metabolism , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/metabolism
13.
Curr Dev Nutr ; 3(4): nzy102, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30963144

ABSTRACT

BACKGROUND: Multiple studies have indicated that formula-fed infants show a different growth trajectory compared with breastfed infants. The observed growth rates are suggested to be linked to higher postprandial levels of branched chain amino acids (BCAAs) and insulin related to differences in protein quality. OBJECTIVE: We evaluated the effects of milk protein denaturation and milk protein composition on postprandial plasma and hormone concentrations. METHODS: Neonatal piglets were bolus-fed randomly, in an incomplete crossover design, 2 of 3 milk protein solutions: native whey protein isolate (NWPI), denatured whey protein isolate (DWPI), or protein base ingredient, comprising whey and casein (PBI). Postprandial plasma amino acids (AAs), insulin, glucagon-like peptide 1, glucose, and paracetamol concentrations were assayed. Plasma responses were fitted with a model of first-order absorption with linear elimination. RESULTS: DWPI (91% denatured protein) compared with NWPI (91% native protein) showed lower essential amino acids (EAAs) (∼10%) and BCAA (13-19%) concentrations in the first 30-60 min. However, total amino acid (TAA) concentration per time-point and area under the curve (AUC), as well as EAA and BCAA AUC were not different. PBI induced a ∼30% lower postprandial insulin spike than NWPI, yet plasma TAA concentration at several time-points and AUC was higher in PBI than in NWPI. The TAA rate constant for absorption (k a) was twofold higher in PBI than in NWPI. Plasma BCAA levels from 60 to 180 min and AUC were higher in PBI than in NWPI. Plasma EAA concentrations and AUCs in PBI and NWPI were not different. CONCLUSIONS: Denaturation of WPI had a minimal effect on postprandial plasma AA concentration. The differences between PBI and NWPI were partly explained by the difference in AA composition, but more likely differences in protein digestion and absorption kinetics. We conclude that modifying protein composition, but not denaturation, of milk protein solutions impacts the postprandial amino acid availability in neonatal piglets.

14.
J Nutr ; 149(1): 36-45, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30608604

ABSTRACT

Background: Preterm infants are born with an immature gut, brain, and immune system, predisposing them to short- and long-term complications. Objective: We hypothesized that a milk diet supplemented with pre- and probiotics (i.e. synbiotics) and glutamine would improve gut, brain, and immune maturation in preterm neonates, using preterm pigs as a model. Methods: Preterm pigs (Landrace x Yorkshire x Duroc, n = 40, delivered by c-section at 90% of gestation) were reared individually until day 23 after birth under highly standardized conditions. Piglets in the intervention group (PPG, n = 20) were fed increasing volumes of bovine milk supplemented with prebiotics (short-chain galacto- and long chain fructo-oligosaccharides 9:1, 4-12 g/L), probiotics (Bifidobacterium breve M16-V, 3 × 109 CFU/d) and l-glutamine [0.15-0.30 g/(kg · d)], and compared with pigs fed bovine milk with added placebo compounds as control (CON, n = 20). Clinical, gastrointestinal, immunological, cognitive, and neurological endpoints were measured. Results: The PPG pigs showed more diarrhea but weight gain, body composition, and gut parameters were similar between the groups. Cognitive performance, assessed in a T-maze, was significantly higher in PPG pigs (P < 0.01), whereas motor function and exploratory interest were similar between the groups. Using ex vivo diffusion imaging, the orientation dispersion index in brain cortical gray matter was 50% higher (P = 0.04), and fractional anisotropy value was 7% lower (P = 0.05) in PPG pigs compared with CON pigs, consistent with increased dendritic branching in PPG. In associative fibers, radial diffusivity was lower and fractional anisotropy was higher in PPG pigs compared with CON pigs (all P < 0.05), while measures in the internal capsule showed a tendency towards reduced radial diffusivity and mean diffusivity (both P = 0.09). On day 23 pigs in the PPG group showed higher blood leukocyte numbers (+43%), neutrophil counts (+100%), and phagocytic rates (+24%), relative to CON, all P < 0.05. Conclusion: Preterm pigs supplemented with Bifidobacterium breve, galacto- and fructo-oligosaccharides, and l-glutamine showed enhanced neuronal and immunological development. The findings indicate the potential for targeted nutritional interventions after preterm birth, to support development of important systems such as immunity and brain.


Subject(s)
Animals, Newborn , Brain/drug effects , Brain/growth & development , Glutamine/pharmacology , Premature Birth , Swine/growth & development , Synbiotics/administration & dosage , Animals , Fatty Acids , Gastrointestinal Microbiome , Glutamine/chemistry
15.
EMBO Rep ; 20(2)2019 02.
Article in English | MEDLINE | ID: mdl-30530633

ABSTRACT

During the suckling-to-weaning transition, the intestinal epithelium matures, allowing digestion of solid food. Transplantation experiments with rodent fetal epithelium into subcutaneous tissue of adult animals suggest that this transition is intrinsically programmed and occurs in the absence of dietary or hormonal signals. Here, we show that organoids derived from mouse primary fetal intestinal epithelial cells express markers of late fetal and neonatal development. In a stable culture medium, these fetal epithelium-derived organoids lose all markers of neonatal epithelium and start expressing hallmarks of adult epithelium in a time frame that mirrors epithelial maturation in vivoIn vitro postnatal development of the fetal-derived organoids accelerates by dexamethasone, a drug used to accelerate intestinal maturation in vivo Together, our data show that organoids derived from fetal epithelium undergo suckling-to-weaning transition, that the speed of maturation can be modulated, and that fetal organoids can be used to model the molecular mechanisms of postnatal epithelial maturation.


Subject(s)
Intestinal Mucosa/cytology , Intestines/cytology , Organoids , Animals , Cell Differentiation , Computational Biology/methods , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Profiling , Immunohistochemistry , Mice , Tissue Culture Techniques , Weaning
16.
Neurosci Biobehav Rev ; 95: 191-201, 2018 12.
Article in English | MEDLINE | ID: mdl-30195933

ABSTRACT

In the first 2-3 years of life, the gut microbiota of infants quickly becomes diverse and rich. Disruptions in the evolving gut microbiota during this critical developmental period can impact brain development. Communication between the microbiota, gut and brain is driven by hormonal and neural regulation, as well as immune and metabolic pathways, however, our understanding of how the parallel developments that may underlie this communication are limited. In this paper, we review the known associations between the gut microbiota and brain development and brain function in early life, speculate on the potential mechanisms involved in this complex relationship and describe how nutritional intervention can further modulate the microbiota and, ultimately, brain development and function.


Subject(s)
Brain/growth & development , Gastrointestinal Microbiome , Animals , Brain/microbiology , Brain/physiology , Humans
17.
Eur J Clin Microbiol Infect Dis ; 37(3): 475-483, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29368074

ABSTRACT

Antibiotic treatment is common practice in the neonatal ward for the prevention and treatment of sepsis, which is one of the leading causes of mortality and morbidity in preterm infants. Although the effect of antibiotic treatment on microbiota development is well recognised, little attention has been paid to treatment duration. We studied the effect of short and long intravenous antibiotic administration on intestinal microbiota development in preterm infants. Faecal samples from 15 preterm infants (35 ± 1 weeks gestation and 2871 ± 260 g birth weight) exposed to no, short (≤ 3 days) or long (≥ 5 days) treatment with amoxicillin/ceftazidime were collected during the first six postnatal weeks. Microbiota composition was determined through 16S rRNA gene sequencing and by quantitative polymerase chain reaction (qPCR). Short and long antibiotic treat ment significantly lowered the abundance of Bifidobacterium right after treatment (p = 0.027) till postnatal week three (p = 0.028). Long treatment caused Bifidobacterium abundance to remain decreased till postnatal week six (p = 0.009). Antibiotic treatment was effective against members of the Enterobacteriaceae family, but allowed Enterococcus to thrive and remain dominant for up to two weeks after antibiotic treatment discontinuation. Community richness and diversity were not affected by antibiotic treatment, but were positively associated with postnatal age (p < 0.023) and with abundance of Bifidobacterium (p = 0.003). Intravenous antibiotic administration during the first postnatal week greatly affects the infant's gastrointestinal microbiota. However, quick antibiotic treatment cessation allows for its recovery. Disturbances in microbiota development caused by short and, more extensively, by long antibiotic treatment could affect healthy development of the infant via interference with maturation of the immune system and gastrointestinal tract.


Subject(s)
Administration, Intravenous/statistics & numerical data , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Infant, Premature/physiology , Anti-Bacterial Agents/therapeutic use , Bifidobacterium/genetics , Enterobacteriaceae/genetics , Enterococcus/genetics , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Infant, Newborn , Male , Real-Time Polymerase Chain Reaction , Time Factors
18.
Mol Cell Proteomics ; 16(9): 1610-1620, 2017 09.
Article in English | MEDLINE | ID: mdl-28684633

ABSTRACT

OBJECTIVE: Development of the gastrointestinal tract and immune system can be modulated by the gut microbiota. Establishment of the intestinal microbiota, in its turn, is affected by host and environmental factors. As such, development of the gut microbiota is greatly impacted in preterm infants, who have an immature gut and are exposed to factors like hospitalization, caesarean section, antibiotics, and respiratory support. DESIGN: We analyzed fecal microbiota composition and activity of ten preterm infants (gestational age 25-30 weeks; birthweight 630-1750 g) during the first six postnatal weeks through metaproteomics (LC-MS/MS) and 16S-rRNA gene sequencing. RESULTS: A gestational-age-dependent microbial signature is observed, enabling microbiota-based differentiation between extremely preterm (25-27 weeks gestation) and very preterm (30 weeks gestation) infants. In very preterm infants, the intestinal microbiota developed toward a Bifidobacterium-dominated community and was associated with high abundance of proteins involved in carbohydrate and energy metabolism. Extremely preterm infants remained predominantly colonized by facultative anaerobes and were associated with proteins involved in membrane transport and translation. Delayed colonization by obligate anaerobes could be associated with antibiotic treatment and respiratory support. CONCLUSION: We speculate that gestational age and its associated intensity of care (e.g. antibiotics and respiratory support) affects intestinal microbiota composition and activity in preterm infants. As the gut microbiota plays a major role in development of the neonate, gestational age and its associated factors could set the stage for early and later life health complications via interference with microbiota development.


Subject(s)
Gastrointestinal Microbiome , Infant, Premature/metabolism , Proteomics/methods , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Cattle , Feces/microbiology , Female , Gastrointestinal Microbiome/drug effects , Gestational Age , Humans , Infant, Newborn , Male , Milk/chemistry , Oligosaccharides/analysis , Principal Component Analysis , Proteins/metabolism , RNA, Ribosomal, 16S/genetics , Respiration
19.
Nutr Rev ; 75(4): 225-240, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28379454

ABSTRACT

Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations.


Subject(s)
Cesarean Section , Gastrointestinal Microbiome , Brain/growth & development , Female , Gastrointestinal Tract/microbiology , Humans , Pregnancy
20.
Inflamm Bowel Dis ; 22(4): 826-40, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26926038

ABSTRACT

BACKGROUND: Our aims were (1) to correlate changes in the microbiota to intestinal gene expression before and during the development of colitis in Muc2 mice and (2) to investigate whether the heterozygote Muc2 mouse would reveal host markers of gut barrier stress. METHODS: Colon histology, transcriptomics, and microbiota profiling of faecal samples was performed on wild type, Muc2, and Muc2 mice at 2, 4, and 8 weeks of age. RESULTS: Muc2 mice develop colitis in proximal colon after weaning, resulting in inflammatory and adaptive immune responses, and expression of genes associated with human inflammatory bowel disease. Muc2 mice do not develop colitis, but produce a thinner mucus layer. The transcriptome of Muc2 mice revealed differential expression of genes participating in mucosal stress responses and exacerbation of a transient inflammatory state around the time of weaning. Young wild type and Muc2 mice have a more constrained group of bacteria as compared with the Muc2 mice, but at 8 weeks the microbiota composition is more similar in all mice. At all ages, microbiota composition discriminated the groups of mice according to their genotype. Specific bacterial clusters correlated with altered gene expression responses to stress and bacteria, before colitis development, including colitogenic members of the genus Bacteroides. CONCLUSIONS: The abundance of Bacteroides pathobionts increased before histological signs of pathology suggesting they may play a role in triggering the development of colitis. The Muc2 mouse produces a thinner mucus layer and can be used to study mucus barrier stress in the absence of colitis.


Subject(s)
Colitis/pathology , Intestinal Mucosa/pathology , Microbiota , Mucin-2/physiology , Mucus/microbiology , Stress, Physiological , Animals , Colitis/etiology , Colitis/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Intestinal Mucosa/microbiology , Mice , Mice, Knockout , Mucus/metabolism , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...