Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Otolaryngol Head Neck Surg ; 170(6): 1696-1704, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38461407

ABSTRACT

OBJECTIVE: Mucosal decongestion with nasal sprays is a common treatment for nasal airway obstruction. However, the impact of mucosal decongestion on nasal aerodynamics and the physiological mechanism of nasal airflow sensation are incompletely understood. The objective of this study is to compare nasal airflow patterns in nasal airway obstruction (NAO) patients with and without mucosal decongestion and nondecongested healthy subjects. STUDY DESIGN: Cross-sectional study of a convenience sample. SETTING: Academic tertiary medical center. METHODS: Forty-five subjects were studied (15 nondecongested healthy subjects, 15 nondecongested NAO patients, and 15 decongested NAO patients). Three-dimensional models of the nasal anatomy were created from computed tomography scans. Steady-state simulations of airflow and heat transfer were conducted at 15 L/min inhalation rate using computational fluid dynamics. RESULTS: In the narrow side of the nose, unilateral nasal resistance was similar in decongested NAO patients and nondecongested healthy subjects, but substantially higher in nondecongested NAO patients. The vertical airflow distribution within the nasal cavity (inferior vs middle vs superior) was also similar in decongested NAO patients and nondecongested healthy subjects, but nondecongested NAO patients had substantially less middle airflow. Mucosal cooling, quantified by the surface area where heat flux exceeds 50 W/m2, was significantly higher in decongested NAO patients than in nondecongested NAO patients. CONCLUSION: This pilot study suggests that mucosal decongestion improves objective measures of nasal airflow, which is consistent with improved subjective sensation of nasal patency after decongestion.


Subject(s)
Nasal Decongestants , Nasal Mucosa , Nasal Obstruction , Humans , Pilot Projects , Nasal Obstruction/physiopathology , Male , Female , Nasal Decongestants/administration & dosage , Cross-Sectional Studies , Adult , Nasal Mucosa/physiology , Middle Aged , Tomography, X-Ray Computed , Nasal Sprays , Airway Resistance/physiology
2.
Otolaryngol Head Neck Surg ; 170(6): 1581-1589, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38329226

ABSTRACT

OBJECTIVE: Endoscopy is routinely used to diagnose obstructive airway diseases. Currently, endoscopy is only a visualization technique and does not allow quantification of airspace cross-sectional areas (CSAs). This pilot study tested the hypothesis that CSAs can be accurately estimated from depth maps created from virtual endoscopy videos. STUDY DESIGN: Cross-sectional. SETTING: Academic tertiary medical center. METHODS: Virtual endoscopy and depth map videos of the nasal cavity were digitally created based on anatomically accurate three-dimensional (3D) models built from computed tomography scans of 30 subjects. A software tool was developed to outline the airway perimeter and estimate the airspace CSA from the depth maps. Two otolaryngologists used the software tool to estimate the nasopharynx CSA and the nasal valve minimal CSA (mCSA) in the left and right nasal cavities. Model validation statistics were performed. RESULTS: Nasopharynx CSA had a median percent error of 3.7% to 4.6% when compared to the true values measured in the 3D models. Nasal valve mCSA had a median percent error of 22.7% to 33.6% relative to the true values. Raters successfully used the software tool to identify subjects with nasal valve stenosis (ie, mCSA < 0.20 cm2) with a sensitivity of 83.3%, specificity ≥ 90.7%, and classification accuracy ≥ 90.0%. Interrater and intrarater agreements were high. CONCLUSION: This study demonstrates that airway CSAs in 3D models can be accurately estimated from depth maps. The development of artificial intelligence algorithms to compute depth maps may soon allow the quantification of airspace CSAs from clinical endoscopies.


Subject(s)
Endoscopy , Imaging, Three-Dimensional , Nasal Cavity , Proof of Concept Study , Humans , Nasal Cavity/diagnostic imaging , Nasal Cavity/anatomy & histology , Pilot Projects , Endoscopy/methods , Male , Cross-Sectional Studies , Female , Adult , Tomography, X-Ray Computed , Middle Aged , Software , Nasopharynx/diagnostic imaging , Nasopharynx/anatomy & histology
3.
Sleep Med Rev ; 68: 101741, 2023 04.
Article in English | MEDLINE | ID: mdl-36634409

ABSTRACT

Upper airway (UA) collapsibility is one of the key factors that determine the severity of obstructive sleep apnea (OSA). Interventions for OSA are aimed at reducing UA collapsibility, but selecting the optimal alternative intervention for patients who fail CPAP is challenging because currently no validated method predicts how anatomical changes affect UA collapsibility. The gold standard objective measure of UA collapsibility is the pharyngeal critical pressure (Pcrit). A systematic literature review and meta-analysis were performed to identify the anatomical factors with the strongest correlation with Pcrit. A search using the PRISMA methodology was performed on PubMed for English language scientific papers that correlated Pcrit to anatomic variables and OSA severity as measured by the apnea-hypopnea index (AHI). A total of 29 papers that matched eligibility criteria were included in the quantitative synthesis. The meta-analysis suggested that AHI has only a moderate correlation with Pcrit (estimated Pearson correlation coefficient r = 0.46). The meta-analysis identified four key anatomical variables associated with UA collapsibility, namely hyoid position (r = 0.53), tongue volume (r = 0.51), pharyngeal length (r = 0.50), and waist circumference (r = 0.49). In the future, biomechanical models that quantify the relative importance of these anatomical factors in determining UA collapsibility may help identify the optimal intervention for each patient. Many anatomical and structural factors such as airspace cross-sectional areas, epiglottic collapse, and palatal prolapse have inadequate data and require further research.


Subject(s)
Sleep Apnea, Obstructive , Humans , Polysomnography , Sleep Apnea, Obstructive/therapy , Pharynx , Tongue , Nose
4.
Int J Comput Assist Radiol Surg ; 17(2): 403-411, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34837564

ABSTRACT

PURPOSE: Surgery for nasal airway obstruction (NAO) has a high failure rate, with up to 50% of patients reporting persistent symptoms postoperatively. Virtual surgery planning has the potential to improve surgical outcomes, but current manual methods are too labor-intensive to be adopted on a large scale. This manuscript introduces an automatic atlas-based approach for performing virtual septoplasties. METHODS: A cohort of 47 healthy subjects and 26 NAO patients was investigated. An atlas of healthy nasal geometry was constructed. The automatic virtual septoplasty method consists of a multi-stage registration approach to fit the atlas to a target NAO patient, automatically segment the patient's septum and airway, and deform the patient image to have a non-deviated septum. RESULTS: Our automatic virtual septoplasty method straightened the septum successfully in 18 out of 26 NAO patients (69% of cases). In these cases, the ratio of the higher to the lower airspace cross-sectional areas in the left and right nasal cavities improved from 1.47 ± 0.45 to 1.16 ± 0.33 in the region surrounding the septal deviation, showing that the nasal airway became more symmetric after virtual septoplasty. CONCLUSION: This automated virtual septoplasty technique has the potential to greatly reduce the effort required to perform computational fluid dynamics (CFD) analysis of nasal airflow for NAO surgical planning. Future studies are needed to investigate if virtual surgery planning using this method is predictive of subjective symptoms in NAO patients after septoplasty.


Subject(s)
Nasal Obstruction , Rhinoplasty , Humans , Hydrodynamics , Nasal Cavity , Nasal Obstruction/diagnostic imaging , Nasal Obstruction/surgery , Nasal Septum/diagnostic imaging , Nasal Septum/surgery , Treatment Outcome
5.
Comput Biol Med ; 136: 104693, 2021 09.
Article in English | MEDLINE | ID: mdl-34364260

ABSTRACT

BACKGROUND: The higher incidence of obstructive sleep apnea (OSA) in men than in women has been attributed to the upper airway being longer in men. The Starling resistor is the paradigm biomechanical model of upper airway collapse in OSA where a collapsible tube (representing the pharynx) is located between two rigid tubes (representing the nasal cavity and trachea). While the Starling resistor has been extensively studied due to its relevance to many physiological phenomena, the effect of tube length on tube collapsibility has not been quantified yet. METHODS: Finite element analysis of a 3-dimensional collapsible tube subjected to a transmural pressure was performed in ANSYS Workbench. The numerical methods were validated with in vitro experiments in a silicone tube whose modulus of elasticity (361 ± 28 kPa) and dimensions (length = 100 mm, diameter = 22.2 mm, and wall thickness = 1.59 mm) were selected so that tube compliance was similar to pharyngeal compliance in humans during sleep. The buckling pressure (transmural pressure at which the tube collapses) was quantified in tubes of three different diameters (10 mm, 16 mm, and 22.2 mm) and ten length-to-diameter ratios (L/D = 4 to 13), while keeping the wall-thickness-to-radius ratio constant at 0.143. RESULTS: The absolute value of the buckling pressure decreased from 4.7 to 3.3 cmH2O (461-324 Pa) when L/D increased from 4 to 13. The buckling pressure was nearly independent from tube length for L/D >10. CONCLUSIONS: Our finding that longer tubes are more collapsible than shorter tubes is consistent with the higher incidence of obstructive sleep apnea in males than females.


Subject(s)
Pharynx , Sleep Apnea, Obstructive , Elasticity , Female , Humans , Male , Pressure , Sleep
6.
Facial Plast Surg Aesthet Med ; 23(1): 13-20, 2021.
Article in English | MEDLINE | ID: mdl-32471319

ABSTRACT

Background: Predicting symptomatic relief after septoplasty has been difficult. Minimal cross-sectional area (mCSA) measured by acoustic rhinometry and airflow resistance (R) measured by rhinomanometry have been used to select surgical candidates with mixed success. An important assumption is that mCSA and resistance are tightly coupled, but studies have reported weak or no correlation. Recently, we proposed the Bernoulli Obstruction Theory as an explanation, where tight coupling between mCSA and R is only predicted below a critical mCSA (Acrit). Methods: The nasal airway and septum of 10 healthy subjects were reconstructed from computed tomography scans. Simulated anterior septal deviations of increasing severity were created. Computational fluid dynamics simulations were performed to quantify mCSA, resistance, and flow in the healthy septum model and four simulated septal deviation models for each subject (total of 50 models). Results: A tighter coupling between mCSA and resistance was found below Acrit, estimated to be 0.20 cm2 (a very severe deviation). Above Acrit, enlarging the mCSA had a smaller effect in patients with narrower cross-sectional area in the postvalve region (CSAPV). Conclusions: Two patterns of flow increase are expected with septoplasty. Below Acrit, enlarging mCSA predictably increases flow. Above Acrit, the effect size of increasing mCSA depends on CSAPV. Unrecognized small CSAPV may explain persistent sensation of nasal obstruction after septoplasty. Our data suggest that inferior turbinate reduction ipsilateral to a septal deviation may amplify airflow benefits after septoplasty in patients with a narrow CSAPV.


Subject(s)
Nasal Cavity/diagnostic imaging , Nasal Obstruction/diagnostic imaging , Nasal Septum/diagnostic imaging , Tomography, X-Ray Computed , Adult , Computer Simulation , Female , Healthy Volunteers , Humans , Hydrodynamics , Male , Nasal Cavity/surgery , Nasal Obstruction/surgery , Nasal Septum/surgery , Rhinometry, Acoustic , Rhinoplasty/methods
10.
Int J Comput Assist Radiol Surg ; 15(4): 725-735, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32078099

ABSTRACT

PURPOSE: A deviated nasal septum is the most common etiology for nasal airway obstruction (NAO), and septoplasty is the most common surgical procedure performed by ear-nose-throat surgeons in adults. However, quantitative criteria are rarely adopted to select patients for surgery, which may explain why up to 50% of patients report persistent or recurrent symptoms of nasal obstruction postoperatively. This study reports a systematic virtual surgery method to identify patients who may benefit from septoplasty. METHODS: One patient with symptoms of NAO due to a septal deviation was selected to illustrate the virtual surgery concept. Virtual septoplasty was implemented in three steps: (1) determining if septal geometry is abnormal preoperatively, (2) virtually correcting the deviation while preserving the anatomical shape of the septum, and (3) estimating the post-surgical improvement in airflow using computational fluid dynamics. Anatomical and functional changes predicted by the virtual surgery method were compared to a standard septoplasty performed independently from the computational analysis. RESULTS: A benchmark healthy nasal septum geometry was obtained by averaging the septum dimensions of 47 healthy individuals. A comparison of the nasal septum geometry in the NAO patient with the benchmark geometry identified the precise locations where septal deviation and thickness exceeded the healthy range. Good agreement was found between the virtual surgery predictions and the actual surgical outcomes for both airspace minimal cross-sectional area (0.05 cm2 pre-surgery, 0.54 cm2 virtual surgery, 0.50 cm2 actual surgery) and nasal resistance (0.91 Pa.s/ml pre-surgery, 0.08 Pa.s/ml virtual surgery, 0.08 Pa.s/ml actual surgery). CONCLUSIONS: Previous virtual surgery methods for NAO were based on manual edits and subjective criteria. The virtual septoplasty method proposed in this study is objective and has the potential to be fully automated. Future implementation of this method in virtual surgery planning software has the potential to improve septoplasty outcomes.


Subject(s)
Nasal Obstruction/surgery , Nasal Septum/surgery , Rhinoplasty , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Nasal Obstruction/diagnostic imaging , Nasal Septum/diagnostic imaging , Prognosis , Software , Tomography, X-Ray Computed , Treatment Outcome , Young Adult
11.
Int J Comput Assist Radiol Surg ; 15(1): 87-98, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31267334

ABSTRACT

PURPOSE: Virtual surgery planning based on computational fluid dynamics (CFD) simulations of nasal airflow has the potential to improve surgical outcomes for patients with nasal airway obstruction (NAO). Virtual surgery planning requires normative ranges of airflow variables, but few studies to date have quantified inter-individual variability of nasal airflow among healthy subjects. This study reports CFD simulations of nasal airflow in 47 healthy adults. METHODS: Anatomically accurate three-dimensional nasal models were reconstructed from cone beam computed tomography scans and used for steady-state inspiratory airflow simulations with a bilateral flowrate of 250 ml/s. Normal subjective sensation of nasal patency was confirmed using the nasal obstruction symptom evaluation and visual analog scale. Healthy ranges for several CFD variables known to correlate with subjective nasal patency were computed, including unilateral airflow, nasal resistance, airspace minimal cross-sectional area (mCSA), heat flux (HF), and surface area stimulated by mucosal cooling (defined as the area where HF > 50 W/m2). The normative ranges were targeted to contain 95% of the healthy population and computed using a nonparametric method based on order statistics. RESULTS: A wide range of inter-individual variability in nasal airflow was observed among healthy subjects. Unilateral airflow varied from 60 to 191 ml/s, airflow partitioning ranged from 23.8 to 76.2%, and unilateral mCSA varied from 0.24 to 1.21 cm2. These ranges are in good agreement with rhinomanometry and acoustic rhinometry data from the literature. A key innovation of this study are the normative ranges of flow variables associated with mucosal cooling, which recent research suggests is the primary physiological mechanism of nasal airflow sensation. Unilateral HF ranged from 94 to 281 W/m2, while the surface area stimulated by cooling ranged from 27.4 to 64.3 cm2. CONCLUSIONS: These normative ranges may serve as targets in future virtual surgery planning for patients with NAO.


Subject(s)
Computer Simulation , Imaging, Three-Dimensional , Models, Anatomic , Nasal Cavity/physiology , Nasal Obstruction/surgery , Adult , Cone-Beam Computed Tomography , Female , Humans , Hydrodynamics , Male , Nasal Cavity/diagnostic imaging , Nasal Obstruction/diagnosis , Reference Values
13.
Lasers Surg Med ; 51(2): 150-160, 2019 02.
Article in English | MEDLINE | ID: mdl-30051633

ABSTRACT

OBJECTIVES: Adenotonsillectomy (AT) is commonly used to treat upper airway obstruction in children, but selection of patients who will benefit most from AT is challenging. The need for diagnostic evaluation tools without sedation, radiation, or high costs has motivated the development of long-range optical coherence tomography (LR-OCT), providing real-time cross-sectional airway imaging during endoscopy. Since the endoscope channel location is not tracked in conventional LR-OCT, airway curvature must be estimated and may affect predicted airway resistance. The study objective was to assess effects of three realistic airway curvatures on predicted airway resistance using computational fluid dynamics (CFD) in LR-OCT reconstructions of the upper airways of pediatric patients, before and after AT. METHODS: Eight subjects (five males, three females, aged 4-9 years) were imaged using LR-OCT before and after AT during sedated endoscopy. Three-dimensional (3D) airway reconstructions included three airway curvatures. Steady-state, inspiratory airflow simulations were conducted under laminar conditions, along with turbulent simulations for one subject using the k-ω turbulence model. Airway resistance (pressure drop/flow) was compared using two-tailed Wilcoxon signed rank tests. RESULTS: Regardless of the airway curvatures, CFD findings corroborate a surgical end-goal with computed post-operative airway resistance significantly less than pre-operative (P < 0.01). The individual resistances did not vary significantly for different airway curvatures (P > 0.25). Resistances computed using turbulent simulations differed from laminar results by less than ∼5%. CONCLUSIONS: The results suggest that reconstruction of the upper airways from LR-OCT imaging data may not need to account for airway curvature to be predictive of surgical effects on airway resistance. Lasers Surg. Med. 51:150-160, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Airway Obstruction/diagnostic imaging , Airway Obstruction/surgery , Esophagoscopy , Plastic Surgery Procedures , Tomography, Optical Coherence , Adenoids/pathology , Airway Obstruction/etiology , Airway Resistance , Child , Child, Preschool , Computer Simulation , Female , Humans , Hydrodynamics , Hypertrophy , Male , Palatine Tonsil/pathology
14.
Clin Biomech (Bristol, Avon) ; 61: 172-180, 2019 01.
Article in English | MEDLINE | ID: mdl-30594764

ABSTRACT

BACKGROUND: Despite advances in medicine and expenditures associated in treatment of nasal airway obstruction, 25-50% of patients undergoing nasal surgeries complain of persistent obstructive symptoms. Our objective is to develop a "stepwise virtual surgery" method that optimizes surgical outcomes for treatment of nasal airway obstruction. METHODS: Pre-surgery radiographic images of two subjects with nasal airway obstruction were imported into Mimics imaging software package for three-dimension reconstruction of the airway. A hierarchical stepwise approach was used to create seven virtual surgery nasal models comprising individual (inferior turbinectomy or septoplasty) procedures and combined inferior turbinectomy and septoplasty procedures via digital modifications of each subject's pre-surgery nasal model. To evaluate the effects of these procedures on nasal patency, computational fluid dynamics modeling was used to perform steady-state laminar inspiratory airflow and heat transfer simulations in every model, at resting breathing. Airflow-related variables were calculated for virtual surgery models and compared with dataset containing results of healthy subjects with no symptoms of nasal obstruction. FINDINGS: For Subject 1, nasal models with virtual septoplasty only and virtual septoplasty plus inferior turbinectomy on less obstructed side were within the healthy reference thresholds on both sides of the nasal cavity and across all three computed variables. For Subject 2, virtual septoplasty plus inferior turbinectomy on less obstructed side model produced the best result. INTERPRETATION: The hierarchical stepwise approach implemented in this preliminary report demonstrates computational fluid dynamics modeling ability to evaluate the efficiency of different surgical procedures for nasal obstruction in restoring nasal patency to normative level.


Subject(s)
Nasal Obstruction/surgery , Nasal Septum/surgery , Turbinates/surgery , Adult , Computer Simulation , Female , Humans , Hydrodynamics , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Male , Middle Aged , Models, Anatomic , Pressure , Respiration , Software , Surgery, Computer-Assisted , Treatment Outcome , Young Adult
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5802-5805, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441654

ABSTRACT

Upper airway obstructions leading todifficulty breathing are significant problems that often require surgery to improve patient quality of life. However, these surgeries often have poor outcomes with little symptom improvement. This paper outlines the design of an interactive, patient-specific virtual surgical planning system that uses patient CT scans to generate three-dimensional representations of the airways and incorporates computational fluid dynamics (CFD) as a part of the surgical planning process. Individualized virtual surgeries can be performed by editing these models, which are then analyzed using CFD to compare pre- and post- surgery flow characteristics to assess patient symptom improvement. The prototype system shows significant promise by being intuitive, interactive, with a potential fast flow solver that provides near real-time feedback to the clinician.


Subject(s)
Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Nasal Obstruction/surgery , Surgical Procedures, Operative , Computer Simulation , Humans , Hydrodynamics , User-Computer Interface
17.
JAMA Facial Plast Surg ; 20(1): 63-69, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29049474

ABSTRACT

IMPORTANCE: Nasal airway obstruction (NAO) is a common problem that affects patient quality of life. Surgical success for NAO correction is variable. Virtual surgery planning via computational fluid dynamics (CFD) has the potential to improve the success rates of NAO surgery. OBJECTIVE: To elicit surgeon feedback of a virtual surgery planning tool for NAO and to determine if this tool affects surgeon decision making. DESIGN, SETTING, AND PARTICIPANTS: For this cross-sectional study, 60-minute face-to-face interviews with board-certified otolaryngologists were conducted at a single academic otolaryngology department from September 16, 2016, through October 7, 2016. Virtual surgery methods were introduced, and surgeons were able to interact with the virtual surgery planning tool interface. Surgeons were provided with a patient case of NAO, and open feedback of the platform was obtained, with emphasis on surgical decision making. MAIN OUTCOMES AND MEASURES: Likert scale responses and qualitative feedback were collected for the virtual surgery planning tool and its influence on surgeon decision making. RESULTS: Our 9 study participants were all male, board-certified otolaryngologists with a mean (range) 15 (4-28) number of years in practice and a mean (range) number of nasal surgeries per month at 2.2 (0.0-6.0). When examined on a scale of 1 (not at all) to 5 (completely), surgeon mean (SD) score was 3.4 (0.5) for how realistic the virtual models were compared with actual surgery. On the same scale, when asked how much the virtual surgery planning tool changed surgeon decision making, mean (SD) score was 2.6 (1.6). On a scale of 1 (strongly disagree) to 7 (strongly agree), surgeon scores for perceived usefulness of the technology and attitude toward using it were 5.1 (1.1) and 5.7 (0.9), respectively. CONCLUSIONS AND RELEVANCE: Our study shows positive surgeon experience with a virtual surgery planning tool for NAO based on CFD simulations. Surgeons felt that future applications and areas of study of the virtual surgery planning tool include its potential role for patient counseling, selecting appropriate surgical candidates, and identifying which anatomical structures should be targeted for surgical correction. LEVEL OF EVIDENCE: NA.


Subject(s)
Attitude of Health Personnel , Clinical Decision-Making/methods , Nasal Obstruction/surgery , Preoperative Care/methods , Rhinoplasty/methods , Surgery, Computer-Assisted/methods , Virtual Reality , Adult , Cross-Sectional Studies , Directive Counseling , Female , Humans , Hydrodynamics , Imaging, Three-Dimensional , Male , Models, Anatomic , Nasal Obstruction/diagnostic imaging , Nasal Obstruction/physiopathology , Otolaryngologists , Patient Selection , Pilot Projects , Qualitative Research , Surgeons , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...