Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nat Microbiol ; 9(5): 1176-1188, 2024 May.
Article En | MEDLINE | ID: mdl-38684911

Matching donor and recipient blood groups based on red blood cell (RBC) surface ABO glycans and antibodies in plasma is crucial to avoid potentially fatal reactions during transfusions. Enzymatic conversion of RBC glycans to the universal group O is an attractive solution to simplify blood logistics and prevent ABO-mismatched transfusions. The gut symbiont Akkermansia muciniphila can degrade mucin O-glycans including ABO epitopes. Here we biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions. Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analyses of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module. This study demonstrates the potential utility of mucin-degrading gut bacteria as valuable sources of enzymes for production of universal blood for transfusions.


ABO Blood-Group System , Akkermansia , Glycoside Hydrolases , ABO Blood-Group System/immunology , Humans , Glycoside Hydrolases/metabolism , Mucins/metabolism , Erythrocytes/immunology , Polysaccharides/metabolism , Gastrointestinal Microbiome , Blood Group Antigens/metabolism , Blood Group Antigens/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/immunology
2.
Transfusion ; 63(10): 1951-1961, 2023 10.
Article En | MEDLINE | ID: mdl-37694916

BACKGROUND: Correct ABO blood-group matching between donor and patient is crucial for safe transfusions. We investigated the underlying reason causing inconclusive ABO serology in samples referred to our laboratory. STUDY DESIGN AND METHODS: Flow cytometric analysis, ABO genotyping, and sequencing were used to characterize ABO-discrepant blood samples (n = 13). ABO gene variants were inserted in a GFP-containing bicistronic vector to assess A/B expression following overexpression in HeLa cells. RESULTS: Seven novel alleles with nonsense mutations predicted to truncate the encoded ABO glycosyltransferases were identified. While these variants could represent O alleles, serology showed signs of ABO glycosyltransferase activity. ABO*A1.01-related alleles displayed remarkably characteristic percentages of A-positive cells for samples with the same variant: c.42C>A (p.Cys14*; 10%), c.102C>A (p.Tyr34*; 31%-32%, n = 2), c.106dup (p.Val36Glyfs*21; 16%-17%, n = 3) or c.181_182ins (p.Leu61Argfs*21; 12%-13%, n = 2). Transfection studies confirmed significantly decreased A expression compared to wild type. The remaining variants were found on ABO*B.01 background: c.1_5dup (pGly3Trpfs*20), c.15dup (p.Arg6Alafs*51) or c.496del (p.Thr166Profs*26). Although the absence of plasma anti-B was noted overall, B antigen expression was barely detected on erythrocytes. Overexpression confirmed decreased B in two variants compared to wildtype while c.1_5dup only showed a non-significant downward trend. CONCLUSION: Samples displaying aberrant ABO serology revealed seven principally interesting alleles. Despite the presence of truncating mutations, normally resulting in null alleles, low levels of ABO antigens were detectable where alterations affected ABO exons 1-4 but not exon 7. This is compatible with the previously proposed concept that alternative start codons in early exons can be used to initiate the translation of functional ABO glycosyltransferase.


Blood Group Antigens , Glycosyltransferases , Humans , Alleles , Glycosyltransferases/genetics , Genotype , Phenotype , HeLa Cells , ABO Blood-Group System/genetics
3.
Immunohematology ; 34(4): 161-163, 2018 Dec.
Article En | MEDLINE | ID: mdl-30624951

CONCLUSIONS: The main change that has occurred in the GLOB blood group system since the GLOB review published in this journal in 2013 is the addition of an antigen. The high-prevalence PX2 antigen, originally recognized as the x2 glycosphingolipid, is expressed on red blood cells of most individuals and is elevated in the rare PP1Pk-negative p blood group phenotype. P synthase, encoded by B3GALNT1, was found to elongate paragloboside to PX2 by adding the terminal ß3GalNAc moiety. Hence, PX2 was moved from the GLOB collection to the GLOB system. The presence of naturally-occurring anti-PX2 was noted in P1k and P2k individuals exhibiting nonfunctional P synthase. Although the clinical significance of this specificity remains unclear, a recommendation to avoid transfusing Pk patients with p phenotype blood has been made. Currently, 13 mutations at the highly conserved B3GALNT1 locus have been found to abolish P synthase function and are recognized as null alleles by the International Society of Blood Transfusion. A new allele with a missense mutation but resulting in normal expression of P has been assigned GLOB*02. Finally, the GLOB collection was made obsolete after the move of LKE antigen to the 901 series.


Blood Group Antigens/immunology , Alleles , Erythrocytes , Humans , N-Acetylgalactosaminyltransferases , Phenotype
...