ABSTRACT
BACKGROUND: Immunizing human volunteers by mosquito bite with radiation-attenuated Plasmodium falciparum sporozoites (RAS) results in high-level protection against infection. Only two volunteers have been similarly immunized with P. vivax (Pv) RAS, and both were protected. A phase 2 controlled clinical trial was conducted to assess the safety and protective efficacy of PvRAS immunization. METHODOLOGY/PRINCIPAL FINDINGS: A randomized, single-blinded trial was conducted. Duffy positive (Fy+; Pv susceptible) individuals were enrolled: 14 received bites from irradiated (150 ± 10 cGy) Pv-infected Anopheles mosquitoes (RAS) and 7 from non-irradiated non-infected mosquitoes (Ctl). An additional group of seven Fy- (Pv refractory) volunteers was immunized with bites from non-irradiated Pv-infected mosquitoes. A total of seven immunizations were carried out at mean intervals of nine weeks. Eight weeks after last immunization, a controlled human malaria infection (CHMI) with non-irradiated Pv-infected mosquitoes was performed. Nineteen volunteers completed seven immunizations (12 RAS, 2 Ctl, and 5 Fy-) and received a CHMI. Five of 12 (42%) RAS volunteers were protected (receiving a median of 434 infective bites) compared with 0/2 Ctl. None of the Fy- volunteers developed infection by the seventh immunization or after CHMI. All non-protected volunteers developed symptoms 8-13 days after CHMI with a mean pre-patent period of 12.8 days. No serious adverse events related to the immunizations were observed. Specific IgG1 anti-PvCS response was associated with protection. CONCLUSION: Immunization with PvRAS was safe, immunogenic, and induced sterile immunity in 42% of the Fy+ volunteers. Moreover, Fy- volunteers were refractory to Pv malaria. TRIAL REGISTRATION: Identifier: NCT01082341.
Subject(s)
Anopheles/parasitology , Immunization/methods , Insect Bites and Stings , Malaria Vaccines/immunology , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/blood , Colombia , Duffy Blood-Group System , Female , Humans , Immunization/adverse effects , Immunoglobulin G/blood , Malaria Vaccines/administration & dosage , Malaria, Vivax/ethnology , Malaria, Vivax/parasitology , Male , Middle Aged , Plasmodium vivax/physiology , Plasmodium vivax/radiation effects , Single-Blind Method , Sporozoites/radiation effects , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Volunteers , Young AdultABSTRACT
A safe and reproducible Plasmodium vivax infectious challenge method is required to evaluate the efficacy of malaria vaccine candidates. Seventeen healthy Duffy (+) and five Duffy (-) subjects were randomly allocated into three (A-C) groups and were exposed to the bites of 2-4 Anopheles albimanus mosquitoes infected with Plasmodium vivax derived from three donors. Duffy (-) subjects were included as controls for each group. Clinical manifestations of malaria and parasitemia were monitored beginning 7 days post-challenge. All Duffy (+) volunteers developed patent malaria infection within 16 days after challenge. Prepatent period determined by thick smear, was longer for Group A (median 14.5 d) than for Groups B and C (median 10 d/each). Infected volunteers recovered rapidly after treatment with no serious adverse events. The bite of as low as two P. vivax-infected mosquitoes provides safe and reliable infections in malaria-naive volunteers, suitable for assessing antimalarial and vaccine efficacy trials.
Subject(s)
Malaria, Vivax/transmission , Plasmodium vivax/immunology , Plasmodium vivax/physiology , Sporozoites/immunology , Adult , Animals , Antimalarials/therapeutic use , Chloroquine/therapeutic use , Duffy Blood-Group System , Female , Fever , Humans , Malaria, Vivax/parasitology , Male , Middle Aged , Parasitemia , Primaquine/therapeutic use , Random Allocation , Sporozoites/physiology , Young AdultABSTRACT
A non-human primate model for the induction of protective immunity against the pre-erythrocytic stages of Plasmodium vivax malaria using radiation-attenuated P. vivax sporozoites may help to characterize protective immune mechanisms and identify novel malaria vaccine candidates. Immune responses and protective efficacy induced by vaccination with irradiated P. vivax sporozoites were evaluated in malaria-naive Aotus monkeys. Three groups of six monkeys received two, five, or ten intravenous inoculations, respectively, of 100,000 irradiated P. vivax sporozoites; control groups received either 10 doses of uninfected salivary gland extract or no inoculations. Immunization resulted in the production low levels of antibodies that specifically recognized P. vivax sporozoites and the circumsporozoite protein. Additionally, immunization induced low levels of antigen-specific IFN-γ responses. Intravenous challenge with viable sporozoites resulted in partial protection in a dose-dependent manner. These findings suggest that the Aotus monkey model may be able to play a role in preclinical development of P. vivax pre-erythrocytic stage vaccines.