Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Cardiovasc Pathol ; 71: 107640, 2024.
Article in English | MEDLINE | ID: mdl-38604505

ABSTRACT

Exertional dyspnea has been documented in US military personnel after deployment to Iraq and Afghanistan. We studied whether continued exertional dyspnea in this patient population is associated with pulmonary vascular disease (PVD). We performed detailed histomorphometry of pulmonary vasculature in 52 Veterans with biopsy-proven post-deployment respiratory syndrome (PDRS) and then recruited five of these same Veterans with continued exertional dyspnea to undergo a follow-up clinical evaluation, including symptom questionnaire, pulmonary function testing, surface echocardiography, and right heart catheterization (RHC). Morphometric evaluation of pulmonary arteries showed significantly increased intima and media thicknesses, along with collagen deposition (fibrosis), in Veterans with PDRS compared to non-diseased (ND) controls. In addition, pulmonary veins in PDRS showed increased intima and adventitia thicknesses with prominent collagen deposition compared to controls. Of the five Veterans involved in our clinical follow-up study, three had borderline or overt right ventricle (RV) enlargement by echocardiography and evidence of pulmonary hypertension (PH) on RHC. Together, our studies suggest that PVD with predominant venular fibrosis is common in PDRS and development of PH may explain exertional dyspnea and exercise limitation in some Veterans with PDRS.


Subject(s)
Afghan Campaign 2001- , Hypertension, Pulmonary , Pulmonary Artery , Humans , Male , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Pulmonary Artery/diagnostic imaging , Adult , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Middle Aged , Female , Iraq War, 2003-2011 , Pulmonary Veins/pathology , Pulmonary Veins/physiopathology , Pulmonary Veins/diagnostic imaging , Dyspnea/etiology , Dyspnea/physiopathology , Veterans , Case-Control Studies , Veterans Health , Biopsy , Fibrosis
2.
BMC Cancer ; 24(1): 441, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594604

ABSTRACT

BACKGROUND: We recently found that epiplakin 1 (EPPK1) alterations were present in 12% of lung adenocarcinoma (LUAD) cases and were associated with a poor prognosis in early-stage LUAD when combined with other molecular alterations. This study aimed to identify a probable crucial role for EPPK1 in cancer development. METHODS: EPPK1 mRNA and protein expression was analyzed with clinical variables. Normal bronchial epithelial cell lines were exposed to cigarette smoke for 16 weeks to determine whether EPPK1 protein expression was altered after exposure. Further, we used CRISPR-Cas9 to knock out (KO) EPPK1 in LUAD cell lines and observed how the cancer cells were altered functionally and genetically. RESULTS: EPPK1 protein expression was associated with smoking and poor prognosis in early-stage LUAD. Moreover, a consequential mesenchymal-to-epithelial transition was observed, subsequently resulting in diminished cell proliferation and invasion after EPPK1 KO. RNA sequencing revealed that EPPK1 KO induced downregulation of 11 oncogenes, 75 anti-apoptosis, and 22 angiogenesis genes while upregulating 8 tumor suppressors and 12 anti-cell growth genes. We also observed the downregulation of MYC and upregulation of p53 expression at both protein and RNA levels following EPPK1 KO. Gene ontology enrichment analysis of molecular functions highlighted the correlation of EPPK1 with the regulation of mesenchymal cell proliferation, mesenchymal differentiation, angiogenesis, and cell growth after EPPK1 KO. CONCLUSIONS: Our data suggest that EPPK1 is linked to smoking, epithelial to mesenchymal transition, and the regulation of cancer progression, indicating its potential as a therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Prognosis , Adenocarcinoma of Lung/pathology , Adenocarcinoma/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
3.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L539-L550, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38410870

ABSTRACT

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than nondeployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the subjects in this cohort reported exposure to sulfur dioxide (SO2), we developed a model of repetitive exposure to SO2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular (PV) disease. Although abnormalities in small airways were not sufficient to alter lung mechanics, PV remodeling resulted in the development of pulmonary hypertension and reduced exercise tolerance in SO2-exposed mice. SO2 exposure led to increased formation of isolevuglandins (isoLGs) adducts and superoxide dismutase 2 (SOD2) acetylation in endothelial cells, which were attenuated by treatment with the isoLG scavenger 2-hydroxybenzylamine acetate (2-HOBA). In addition, 2-HOBA treatment or Siruin-3 overexpression in a transgenic mouse model prevented vascular remodeling following SO2 exposure. In summary, our results indicate that repetitive SO2 exposure recapitulates many aspects of PDRS and that oxidative stress appears to mediate PV remodeling in this model. Together, these findings provide new insights regarding the critical mechanisms underlying PDRS.NEW & NOTEWORTHY We developed a mice model of "post-deployment respiratory syndrome" (PDRS), a condition in Veterans with unexplained exertional dyspnea. Our model successfully recapitulates many of the pathological and physiological features of the syndrome, revealing involvement of the ROS-isoLGs-Sirt3-SOD2 pathway in pulmonary vasculature pathology. Our study provides additional knowledge about effects and long-term consequences of sulfur dioxide exposure on the respiratory system, serving as a valuable tool for future PDRS research.


Subject(s)
Disease Models, Animal , Sulfur Dioxide , Animals , Mice , Mice, Inbred C57BL , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Lung/pathology , Lung/drug effects , Lung/metabolism , Male , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Mice, Transgenic , Vascular Remodeling/drug effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Endothelial Cells/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects
4.
EBioMedicine ; 101: 105026, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417378

ABSTRACT

BACKGROUND: An intergenic region at chromosome 4q31 is one of the most significant regions associated with COPD susceptibility and lung function in GWAS. In this region, the implicated causal gene HHIP has a unique epithelial expression pattern in adult human lungs, in contrast to dominant expression in fibroblasts in murine lungs. However, the mechanism underlying the species-dependent cell type-specific regulation of HHIP remains largely unknown. METHODS: We employed snATAC-seq analysis to identify open chromatin regions within the COPD GWAS region in various human lung cell types. ChIP-quantitative PCR, reporter assays, chromatin conformation capture assays and Hi-C assays were conducted to characterize the regulatory element in this region. CRISPR/Cas9-editing was performed in BEAS-2B cells to generate single colonies with stable knockout of the regulatory element. RT-PCR and Western blot assays were used to evaluate expression of HHIP and epithelial-mesenchymal transition (EMT)-related marker genes. FINDINGS: We identified a distal enhancer within the COPD 4q31 GWAS locus that regulates HHIP transcription at baseline and after TGFß treatment in a SMAD3-dependent, but Hedgehog-independent manner in human bronchial epithelial cells. The distal enhancer also maintains chromatin topological domains near 4q31 locus and HHIP gene. Reduced HHIP expression led to increased EMT induced by TGFß in human bronchial epithelial cells. INTERPRETATION: A distal enhancer regulates HHIP expression both under homeostatic condition and upon TGFß treatment in human bronchial epithelial cells. The interaction between HHIP and TGFß signalling possibly contributes to COPD pathogenesis. FUNDING: Supported by NIH grants R01HL127200, R01HL148667 and R01HL162783 (to X. Z).


Subject(s)
Hedgehog Proteins , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Animals , Mice , Hedgehog Proteins/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Lung/pathology , Epithelial Cells/metabolism , Chromatin/genetics , Chromatin/metabolism , Transforming Growth Factor beta/metabolism
5.
Am J Respir Crit Care Med ; 209(2): 153-163, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37931077

ABSTRACT

Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Humans , Mice , Epithelium/metabolism , Lung , Pulmonary Disease, Chronic Obstructive/pathology
6.
J Clin Invest ; 133(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37874650

ABSTRACT

Reactivation and dysregulation of the mTOR signaling pathway are a hallmark of aging and chronic lung disease; however, the impact on microvascular progenitor cells (MVPCs), capillary angiostasis, and tissue homeostasis is unknown. While the existence of an adult lung vascular progenitor has long been hypothesized, these studies show that Abcg2 enriches for a population of angiogenic tissue-resident MVPCs present in both adult mouse and human lungs using functional, lineage, and transcriptomic analyses. These studies link human and mouse MVPC-specific mTORC1 activation to decreased stemness, angiogenic potential, and disruption of p53 and Wnt pathways, with consequent loss of alveolar-capillary structure and function. Following mTOR activation, these MVPCs adapt a unique transcriptome signature and emerge as a venous subpopulation in the angiodiverse microvascular endothelial subclusters. Thus, our findings support a significant role for mTOR in the maintenance of MVPC function and microvascular niche homeostasis as well as a cell-based mechanism driving loss of tissue structure underlying lung aging and the development of emphysema.


Subject(s)
Lung , TOR Serine-Threonine Kinases , Mice , Humans , Animals , Lung/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Stem Cells/metabolism , Wnt Signaling Pathway , Aging/genetics
7.
JCI Insight ; 8(18)2023 09 22.
Article in English | MEDLINE | ID: mdl-37639557

ABSTRACT

Diabetic cardiomyopathy, an increasingly global epidemic and a major cause of heart failure with preserved ejection fraction (HFpEF), is associated with hyperglycemia, insulin resistance, and intracardiomyocyte calcium mishandling. Here we identify that, in db/db mice with type 2 diabetes-induced HFpEF, abnormal remodeling of cardiomyocyte transverse-tubule microdomains occurs with downregulation of the membrane scaffolding protein cardiac bridging integrator 1 (cBIN1). Transduction of cBIN1 by AAV9 gene therapy can restore transverse-tubule microdomains to normalize intracellular distribution of calcium-handling proteins and, surprisingly, glucose transporter 4 (GLUT4). Cardiac proteomics revealed that AAV9-cBIN1 normalized components of calcium handling and GLUT4 translocation machineries. Functional studies further identified that AAV9-cBIN1 normalized insulin-dependent glucose uptake in diabetic cardiomyocytes. Phenotypically, AAV9-cBIN1 rescued cardiac lusitropy, improved exercise intolerance, and ameliorated hyperglycemia in diabetic mice. Restoration of transverse-tubule microdomains can improve cardiac function in the setting of diabetic cardiomyopathy and can also improve systemic glycemic control.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Heart Failure , Hyperglycemia , Animals , Mice , Blood Glucose , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/therapy , Heart Failure/therapy , Calcium , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Stroke Volume , Anti-Arrhythmia Agents , Cardiotonic Agents , Myocytes, Cardiac , Hyperglycemia/therapy , Adaptor Proteins, Signal Transducing , Amino Acids , Enzyme Inhibitors , Genetic Therapy
8.
Respir Res ; 24(1): 215, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37649012

ABSTRACT

RATIONALE: X-ray velocimetry (XV) has been utilized in preclinical models to assess lung motion and regional ventilation, though no studies have compared XV-derived physiologic parameters to measures derived through conventional means. OBJECTIVES: To assess agreement between XV-analysis of fluoroscopic lung images and pitot tube flowmeter measures of ventilation. METHODS: XV- and pitot tube-derived ventilatory parameters were compared during tidal breathing and with bilevel-assisted breathing. Levels of agreement were assessed using the Bland-Altman analysis. Mixed models were used to characterize the association between XV- and pitot tube-derived values and optimize XV-derived values for higher ventilatory volumes. MEASUREMENTS AND MAIN RESULTS: Twenty-four healthy volunteers were assessed during tidal breathing and 11 were reassessed with increased minute ventilation with bilevel-assisted breathing. No clinically significant differences were observed between the two methods for respiratory rate (average Δ: 0.58; 95% limits of agreement: -1.55, 2.71) or duty cycle (average Δ: 0.02; 95% limits of agreement: 0.01, 0.03). Tidal volumes and flow rates measured using XV were lower than those measured using the pitot tube flowmeter, particularly at the higher volume ranges with bilevel-assisted breathing. Under these conditions, a mixed-model based adjustment was applied to the XV-derived values of tidal volume and flow rate to obtain closer agreement with the pitot tube-derived values. CONCLUSION: Radiographically obtained measures of ventilation with XV demonstrate a high degree of correlation with parameters of ventilation. If the accuracy of XV were also confirmed for assessing the regional distribution of ventilation, it would provide information that goes beyond the scope of conventional pulmonary function tests or static radiographic assessments.


Subject(s)
Lung , Respiration , Adult , Humans , X-Rays , Radiography , Tidal Volume , Lung/diagnostic imaging
9.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292948

ABSTRACT

Soldiers deployed to Iraq and Afghanistan have a higher prevalence of respiratory symptoms than non-deployed military personnel and some have been shown to have a constellation of findings on lung biopsy termed post-deployment respiratory syndrome (PDRS). Since many of the deployers in this cohort reported exposure to sulfur dioxide (SO 2 ), we developed a model of repetitive exposure to SO 2 in mice that phenocopies many aspects of PDRS, including adaptive immune activation, airway wall remodeling, and pulmonary vascular disease (PVD). Although abnormalities in small airways were not sufficient to alter lung mechanics, PVD was associated with the development of pulmonary hypertension and reduced exercise tolerance in SO 2 exposed mice. Further, we used pharmacologic and genetic approaches to demonstrate a critical role for oxidative stress and isolevuglandins in mediating PVD in this model. In summary, our results indicate that repetitive SO 2 exposure recapitulates many aspects of PDRS and that oxidative stress may mediate PVD in this model, which may be helpful for future mechanistic studies examining the relationship between inhaled irritants, PVD, and PDRS.

10.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L652-L665, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36942863

ABSTRACT

Club cells are found in human small airways where they play an important role in immune defense, xenobiotic metabolism, and repair after injury. Over the past few years, data from single-cell RNA sequencing (scRNA-seq) studies has generated new insights into club cell heterogeneity and function. In this review, we integrate findings from scRNA-seq experiments with earlier in vitro, in vivo, and microscopy studies and highlight the many ways club cells contribute to airway homeostasis. We then discuss evidence for loss of club cells or club cell products in the airways of patients with chronic obstructive pulmonary disease (COPD) and discuss potential mechanisms through which this might occur.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Bronchioles/metabolism , Epithelial Cells/metabolism
11.
Am J Respir Crit Care Med ; 207(9): 1171-1182, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36796082

ABSTRACT

Rationale: Remodeling and loss of distal conducting airways, including preterminal and terminal bronchioles (pre-TBs/TBs), underlie progressive airflow limitation in chronic obstructive pulmonary disease (COPD). The cellular basis of these structural changes remains unknown. Objectives: To identify biological changes in pre-TBs/TBs in COPD at single-cell resolution and determine their cellular origin. Methods: We established a novel method of distal airway dissection and performed single-cell transcriptomic profiling of 111,412 cells isolated from different airway regions of 12 healthy lung donors and pre-TBs of 5 patients with COPD. Imaging CyTOF and immunofluorescence analysis of pre-TBs/TBs from 24 healthy lung donors and 11 subjects with COPD were performed to characterize cellular phenotypes at a tissue level. Region-specific differentiation of basal cells isolated from proximal and distal airways was studied using an air-liquid interface model. Measurements and Main Results: The atlas of cellular heterogeneity along the proximal-distal axis of the human lung was assembled and identified region-specific cellular states, including SCGB3A2+ SFTPB+ terminal airway-enriched secretory cells (TASCs) unique to distal airways. TASCs were lost in COPD pre-TBs/TBs, paralleled by loss of region-specific endothelial capillary cells, increased frequency of CD8+ T cells normally enriched in proximal airways, and augmented IFN-γ signaling. Basal cells residing in pre-TBs/TBs were identified as a cellular origin of TASCs. Regeneration of TASCs by these progenitors was suppressed by IFN-γ. Conclusions: Altered maintenance of the unique cellular organization of pre-TBs/TBs, including loss of the region-specific epithelial differentiation in these bronchioles, represents the cellular manifestation and likely the cellular basis of distal airway remodeling in COPD.


Subject(s)
CD8-Positive T-Lymphocytes , Pulmonary Disease, Chronic Obstructive , Humans , Lung , Bronchioles , Diagnostic Imaging
15.
AMIA Annu Symp Proc ; 2023: 1209-1217, 2023.
Article in English | MEDLINE | ID: mdl-38222356

ABSTRACT

Several studies have found associations between air pollution and respiratory disease outcomes. However, there is minimal prognostic research exploring whether integrating air quality into clinical prediction models can improve accuracy and utility. In this study, we built models using both logistic regression and random forests to determine the benefits of including air quality data with meteorological and clinical data in prediction of COPD exacerbations requiring medical care. Logistic models were not improved by inclusion of air quality. However, the net benefit curves of random forest models showed greater clinical utility with the addition of air quality data. These models demonstrate a practical and relatively low-cost way to include environmental information into clinical prediction tools to improve the clinical utility of COPD prediction. Findings could be used to provide population level health warnings as well as individual-patient risk assessments.


Subject(s)
Air Pollution , Pulmonary Disease, Chronic Obstructive , Humans , Disease Progression , Pulmonary Disease, Chronic Obstructive/diagnosis , Air Pollution/adverse effects , Risk Assessment , Data Accuracy
16.
Am J Respir Cell Mol Biol ; 67(3): 334-345, 2022 09.
Article in English | MEDLINE | ID: mdl-35687143

ABSTRACT

Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.


Subject(s)
Immunoglobulin A, Secretory , Pulmonary Disease, Chronic Obstructive , Receptors, Polymeric Immunoglobulin , Animals , Haemophilus influenzae/enzymology , Humans , Immunoglobulin A, Secretory/metabolism , Leukocyte Elastase/metabolism , Mice , Proteolysis , Pulmonary Disease, Chronic Obstructive/metabolism , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/metabolism , Respiratory System/metabolism
17.
Microb Pathog ; 167: 105554, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35526677

ABSTRACT

Staphylococcus aureus (SA) is a gram-positive coccus and an opportunistic pathogen of humans. The ability of SA to form biofilms is an important virulence mechanism because biofilms are protected from host immune responses and antibiotic treatment. This study examines the relative biofilm strength of a variety of hospital and meat-associated strains of SA, using a crystal violet (CV) staining assay. Biofilms were treated with either DNase or proteinase K prior to CV staining, and compared to mock-treated results, to better understand the biochemical composition. Biofilm polysaccharide concentration was also measured using the phenol sulfuric-acid assay which was normalized to base biofilm strength. We found that hospital-associated isolates have biofilms that bind significantly more CV than for meat isolates and are significantly more protein and polysaccharide-based while meat isolates have significantly more DNA-based biofilms. This study also investigates the effects that biofilm-related genes have on biofilm formation and composition by analyzing specific transposon mutants of genes previously shown to play a role in biofilm development. agrA, atl, clfA, fnbA, purH, and sarA mutants produce significantly weaker biofilms (bind less CV) as compared to a wild-type control, whereas the acnA mutant produces a significantly stronger biofilm. Biofilms formed from these mutant strains were treated (or mock-treated) with DNase or proteinase K and tested with phenol and sulfuric acid to determine what role these genes play in biofilm composition. The acnA, clfA, fnbA, and purH mutants showed significant reduction in biofilm staining after either proteinase K or DNase treatment, agrA and sarA mutants showed significant biofilm reduction after only proteinase K treatment, and an atl mutant did not show significant biofilm reduction after either proteinase K or DNase treatment. These data suggest that biofilms that form without acnA, clfA, fnbA, and purH are DNA- and protein-based, that biofilms lacking agrA and sarA are mainly protein-based, and biofilms lacking atl are mainly polysaccharide-based. These results help to elucidate how these genes affect biofilm formation and demonstrate how mutating biofilm-related genes in SA can cause a change in biofilm composition.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Biofilms , Deoxyribonucleases/pharmacology , Endopeptidase K/pharmacology , Gentian Violet , Hospitals , Humans , Meat , Phenols/pharmacology
18.
Am J Respir Crit Care Med ; 206(3): 260-270, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35550018

ABSTRACT

Rationale: Constrictive bronchiolitis (ConB) is a relatively rare and understudied form of lung disease whose underlying immunopathology remains incompletely defined. Objectives: Our objectives were to quantify specific pathological features that differentiate ConB from other diseases that affect the small airways and to investigate the underlying immune and inflammatory phenotype present in ConB. Methods: We performed a comparative histomorphometric analysis of small airways in lung biopsy samples collected from 50 soldiers with postdeployment ConB, 8 patients with sporadic ConB, 55 patients with chronic obstructive pulmonary disease, and 25 nondiseased control subjects. We measured immune and inflammatory gene expression in lung tissue using the NanoString nCounter Immunology Panel from six control subjects, six soldiers with ConB, and six patients with sporadic ConB. Measurements and Main Results: Compared with control subjects, we found shared pathological changes in small airways from soldiers with postdeployment ConB and patients with sporadic ConB, including increased thickness of the smooth muscle layer, increased collagen deposition in the subepithelium, and lymphocyte infiltration. Using principal-component analysis, we showed that ConB pathology was clearly separable both from control lungs and from small airway disease associated with chronic obstructive pulmonary disease. NanoString gene expression analysis from lung tissue revealed T-cell activation in both groups of patients with ConB with upregulation of proinflammatory pathways, including cytokine-cytokine receptor interactions, NF-κB (nuclear factor-κB) signaling, TLR (Toll-like receptor) signaling, T-cell receptor signaling, and antigen processing and presentation. Conclusions: These findings indicate shared immunopathology among different forms of ConB and suggest that an ongoing T-helper cell type 1-type adaptive immune response underlies airway wall remodeling in ConB.


Subject(s)
Asthma , Bronchiolitis Obliterans , Pulmonary Disease, Chronic Obstructive , Airway Remodeling/physiology , Humans , Lung , NF-kappa B/metabolism
19.
Nat Commun ; 12(1): 4314, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262047

ABSTRACT

Patients with chronic lung disease (CLD) have an increased risk for severe coronavirus disease-19 (COVID-19) and poor outcomes. Here, we analyze the transcriptomes of 611,398 single cells isolated from healthy and CLD lungs to identify molecular characteristics of lung cells that may account for worse COVID-19 outcomes in patients with chronic lung diseases. We observe a similar cellular distribution and relative expression of SARS-CoV-2 entry factors in control and CLD lungs. CLD AT2 cells express higher levels of genes linked directly to the efficiency of viral replication and the innate immune response. Additionally, we identify basal differences in inflammatory gene expression programs that highlight how CLD alters the inflammatory microenvironment encountered upon viral exposure to the peripheral lung. Our study indicates that CLD is accompanied by changes in cell-type-specific gene expression programs that prime the lung epithelium for and influence the innate and adaptive immune responses to SARS-CoV-2 infection.


Subject(s)
Lung Diseases/genetics , SARS-CoV-2/physiology , Transcriptome , Virus Internalization , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/pathology , Chronic Disease , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Immunity, Innate/genetics , Inflammation/genetics , Lung/metabolism , Lung/pathology , Lung Diseases/pathology , SARS-CoV-2/pathogenicity , Virus Replication/genetics
20.
Am J Surg Pathol ; 45(12): 1587-1596, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34081035

ABSTRACT

After deployment to Southwest Asia, some soldiers develop persistent respiratory symptoms, including exercise intolerance and exertional dyspnea. We identified 50 soldiers with a history of deployment to Southwest Asia who presented with unexplained dyspnea and underwent an unrevealing clinical evaluation followed by surgical lung biopsy. Lung tissue specimens from 17 age-matched, nonsmoking subjects were used as controls. Quantitative histomorphometry was performed for evaluation of inflammation and pathologic remodeling of small airways, pulmonary vasculature, alveolar tissue and visceral pleura. Compared with control subjects, lung biopsies from affected soldiers revealed a variety of pathologic changes involving their distal lungs, particularly related to bronchovascular bundles. Bronchioles from soldiers had increased thickness of the lamina propria, smooth muscle hypertrophy, and increased collagen content. In adjacent arteries, smooth muscle hypertrophy and adventitial thickening resulted in increased wall-to-lumen ratio in affected soldiers. Infiltration of CD4 and CD8 T lymphocytes was noted within airway walls, along with increased formation of lymphoid follicles. In alveolar parenchyma, collagen and elastin content were increased and capillary density was reduced in interalveolar septa from soldiers compared to control subjects. In addition, pleural involvement with inflammation and/or fibrosis was present in the majority (92%) of soldiers. Clinical follow-up of 29 soldiers (ranging from 1 to 15 y) showed persistence of exertional dyspnea in all individuals and a decline in total lung capacity. Susceptible soldiers develop a postdeployment respiratory syndrome that includes exertional dyspnea and complex pathologic changes affecting small airways, pulmonary vasculature, alveolar tissue, and visceral pleura.


Subject(s)
Bronchiolitis Obliterans/pathology , Dyspnea/etiology , Lung/pathology , Adult , Asia , Biopsy , Bronchiolitis Obliterans/complications , Bronchiolitis Obliterans/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chronic Disease , Dyspnea/diagnosis , Dyspnea/physiopathology , Female , Humans , Lung/immunology , Lung/physiopathology , Male , Middle Aged , Military Medicine , Military Personnel , Physical Exertion , Retrospective Studies , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL