Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892290

ABSTRACT

Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.


Subject(s)
Breast Neoplasms , Cyclooxygenase 2 , Disease Progression , Nitric Oxide Synthase Type II , Humans , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cyclooxygenase 2/metabolism , Female , Nitric Oxide Synthase Type II/metabolism , Tumor Microenvironment/drug effects , Animals , Nitric Oxide/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Reactive Nitrogen Species/metabolism
2.
JCI Insight ; 9(12)2024 May 21.
Article in English | MEDLINE | ID: mdl-38912586

ABSTRACT

Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.


Subject(s)
Membrane Proteins , Signal Transduction , T-Lymphocytes, Cytotoxic , Animals , Membrane Proteins/metabolism , Mice , Female , Signal Transduction/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy , Indomethacin/pharmacology , Indomethacin/therapeutic use , Cell Line, Tumor , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/therapeutic use , Nucleotidyltransferases/metabolism , Interferon Type I/metabolism , Cyclooxygenase 2/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Mice, Inbred BALB C
3.
Crit Rev Oncog ; 28(1): 27-45, 2023.
Article in English | MEDLINE | ID: mdl-37824385

ABSTRACT

Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.


Subject(s)
Neoplasms , Nitric Oxide Synthase Type II , Nitric Oxide , Humans , Neoplasms/genetics , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Signal Transduction
4.
Front Immunol ; 14: 1021824, 2023.
Article in English | MEDLINE | ID: mdl-37153622

ABSTRACT

Mucosal delivery of IL-27 has been shown to have a therapeutic benefit in murine models of inflammatory bowel disease (IBD). The IL-27 effect was associated with phosphorylated STAT1 (pSTAT1), a product of IL27 receptor signaling, in bowel tissue. To determine whether IL-27 acted directly on colonic epithelium, murine colonoids and primary intact colonic crypts were shown to be unresponsive to IL-27 in vitro and to lack detectable IL-27 receptors. On the other hand, macrophages, which are present in inflamed colon tissue, were responsive to IL-27 in vitro. IL-27 induced pSTAT1 in macrophages, the transcriptome indicated an IFN-like signature, and supernatants induced pSTAT1 in colonoids. IL-27 induced anti-viral activity in macrophages and MHC Class II induction. We conclude that the effects of mucosal delivery of IL-27 in murine IBD are in part based on the known effects of IL27 inducing immunosuppression of T cells mediated by IL-10. We also conclude that IL-27 has potent effects on macrophages in inflamed colon tissue, generating mediators that in turn act on colonic epithelium.


Subject(s)
Inflammatory Bowel Diseases , Interleukin-27 , Mice , Animals , Interleukin-27/therapeutic use , Colon , Inflammatory Bowel Diseases/drug therapy , Macrophages , Epithelium
5.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169743

ABSTRACT

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Subject(s)
Interferon-gamma , Triple Negative Breast Neoplasms , Tumor Microenvironment , Female , Humans , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Necrosis Factor-alpha/metabolism
6.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066331

ABSTRACT

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1ß/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.

7.
Dalton Trans ; 52(16): 5176-5191, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36970749

ABSTRACT

Nitrosyl ruthenium complexes are promising platforms for nitric oxide (NO) and nitroxyl (HNO) release, which exert their therapeutic application. In this context, we developed two polypyridinic compounds with the general formula cis-[Ru(NO)(bpy)2(L)]n+, where L is an imidazole derivative. These species were characterized by spectroscopic and electrochemical techniques, including XANES/EXAFS experiments, and further supported by DFT calculations. Interestingly, assays using selective probes evidenced that both complexes can release HNO on reaction with thiols. This finding was biologically validated by HIF-1α detection. The latter protein is related to angiogenesis and inflammation processes under hypoxic conditions, which is selectively destabilized by nitroxyl. These metal complexes also presented vasodilating properties using isolated rat aorta rings and demonstrated antioxidant properties in free radical scavenging experiments. Based on these results, the new nitrosyl ruthenium compounds showed promising characteristics as potential therapeutic agents for the treatment of cardiovascular conditions such as atherosclerosis, deserving further investigation.


Subject(s)
Coordination Complexes , Ruthenium , Animals , Rats , Nitric Oxide/chemistry , Nitrogen Oxides/chemistry , Ruthenium/chemistry , Sulfhydryl Compounds/chemistry , Cardiovascular Diseases
8.
Biomolecules ; 13(2)2023 02 07.
Article in English | MEDLINE | ID: mdl-36830680

ABSTRACT

The small endogenous signaling molecule nitric oxide (NO) has been linked with chronic inflammation and cancer. The effects of NO are both concentration and temporally dependent; under some conditions, NO protects against damage caused by reactive oxygen species and activates P53 signaling. During chronic inflammation, NO causes DNA damage and inhibits repair proteins. To extend our understanding of the roles of NO during carcinogenesis, we investigated the possible effects of chronic NO exposure on MCF10A breast epithelial cells, as defined by changes in cellular morphology, chromosome/genomic stability, RNA, and protein expression, and altered cell phenotypes. Human MCF10A cells were maintained in varying doses of the NO donor DETANO for three weeks. Distinct patterns of genomic modifications in TP53 and KRAS target genes were detected in NO-treated cells when compared to background mutations. In addition, quantitative real-time PCR demonstrated an increase in the expression of cancer stem cell (CSC) marker CD44 after prolonged exposure to 300 µM DETANO. While similar changes in cell morphology were found in cells exposed to 300-500 µM DETANO, cells cultured in 100 µM DETANO exhibited enhanced motility. In addition, 100 µM NO-treated cells proliferated in serum-free media and selected clonal populations and pooled cells formed colonies in soft agar that were clustered and disorganized. These findings show that chronic exposure to NO generates altered breast epithelial cell phenotypes with malignant characteristics.


Subject(s)
Breast Neoplasms , Nitric Oxide , Humans , Female , Nitric Oxide/metabolism , Tumor Suppressor Protein p53/metabolism , Epithelial Cells/metabolism , Mutation , Inflammation/metabolism , Breast Neoplasms/metabolism
9.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187532

ABSTRACT

Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression. The influence of tumor NOS2/COX2 expression on the landscape of immune markers using multiplex fluorescence imaging of 21 ER- breast tumors were stratified for survival. A powerful relationship between tumor NOS2/COX2 expression and distinct CD8+ T cell phenotypes was observed at 5 years post-diagnosis. These results were confirmed in a validation cohort using gene expression data showing that ratios of NOS2 to CD8 and COX2 to CD8 are strongly associated with poor outcomes in high NOS2/COX2-expressing tumors. Importantly, multiplex imaging identified distinct CD8+ T cell phenotypes relative to tumor NOS2/COX2 expression in Deceased vs Alive patient tumors at 5-year survival. CD8+NOS2-COX2- phenotypes defined fully inflamed tumors with significantly elevated CD8+ T cell infiltration in Alive tumors expressing low NOS2/COX2. In contrast, two distinct phenotypes including inflamed CD8+NOS2+COX2+ regions with stroma-restricted CD8+ T cells and CD8-NOS2-COX2+ immune desert regions with abated CD8+ T cell penetration, were significantly elevated in Deceased tumors with high NOS2/COX2 expression. These results were supported by applying an unsupervised nonlinear dimensionality-reduction technique, UMAP, correlating specific spatial CD8/NOS2/COX2 expression patterns with patient survival. Moreover, spatial analysis of the CD44v6 and EpCAM cancer stem cell (CSC) markers within the CD8/NOS2/COX2 expression landscape revealed positive correlations between EpCAM and inflamed stroma-restricted CD8+NOS2+COX2+ phenotypes at the tumor/stroma interface in deceased patients. Also, positive correlations between CD44v6 and COX2 were identified in immune desert regions in deceased patients. Furthermore, migrating tumor cells were shown to occur only in the CD8-NOS2+COX2+ regions, identifying a metastatic hot spot. Taken together, this study shows the strength of spatial localization analyses of the CD8/NOS2/COX2 landscape, how it shapes the tumor immune microenvironment and the selection of aggressive tumor phenotypes in distinct regions that lead to poor clinical outcomes. This technique could be beneficial for describing tumor niches with increased aggressiveness that may respond to clinically available NOS2/COX2 inhibitors or immune-modulatory agents.

10.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187660

ABSTRACT

Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression. Using an ER- breast cancer patient cohort, we found that the spatial expression patterns of NOS2 and COX2 with CD3+CD8+PD1- T effector (Teff) cells formed a tumor immune landscape that correlated with poor outcome. NOS2 was primarily associated with the tumor-immune interface, whereas COX2 was associated with immune desert regions of the tumor lacking Teff cells. A higher ratio of NOS2 or COX2 to Teff was highly correlated with poor outcomes. Spatial analysis revealed that regional clustering of NOS2 and COX2 was associated with stromal-restricted Teff, while only COX2 was predominant in immune deserts. Examination of other immunosuppressive elements, such as PDL1/PD1, Treg, B7H4, and IDO1, revealed that PDL1/PD1, Treg, and IDO1 were primarily associated with restricted Teff, whereas B7H4 and COX2 were found in tumor immune deserts. Regardless of the survival outcome, other leukocytes, such as CD4 T cells and macrophages, were primarily in stromal lymphoid aggregates. Finally, in a 4T1 model, COX2 inhibition led to a massive cell infiltration, thus validating the hypothesis that COX2 is an essential component of the Teff exclusion process and, thus, tumor evasion. Our study indicates that NOS2/COX2 expression plays a central role in tumor immunosuppression. Our findings indicate that new strategies combining clinically available NOS2/COX2 inhibitors with various forms of immune therapy may open a new avenue for the treatment of aggressive ER-breast cancers.

11.
Redox Biol ; 58: 102529, 2022 12.
Article in English | MEDLINE | ID: mdl-36375380

ABSTRACT

Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8+ T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression. Here, we show that NOS2/COX2 levels influence both the polarization and spatial location of lymphoid cells including CD8+ T cells. Importantly, elevated tumor NOS2/COX2 correlated with exclusion of CD8+ T cells from the tumor epithelium. In contrast, tumors expressing low NOS2/COX2 had increased CD8+ T cell penetration into the tumor epithelium. Consistent with a causative relationship between these observations, pharmacological inhibition of COX2 with indomethacin dramatically reduced tumor growth of the 4T1 model of TNBC in both WT and Nos2- mice. This regimen led to complete tumor regression in ∼20-25% of tumor-bearing Nos2- mice, and these animals were resistant to tumor rechallenge. Th1 cytokines were elevated in the blood of treated mice and intratumoral CD4+ and CD8+ T cells were higher in mice that received indomethacin when compared to control untreated mice. Multiplex immunofluorescence imaging confirmed our phenotyping results and demonstrated that targeted Nos2/Cox2 blockade improved CD8+ T cell penetration into the 4T1 tumor core. These findings are consistent with our observations in low NOS2/COX2 expressing breast tumors proving that COX2 activity is responsible for limiting the spatial distribution of effector T cells in TNBC. Together these results suggest that clinically available NSAID's may provide a cost-effective, novel immunotherapeutic approach for treatment of aggressive tumors including triple negative breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Triple Negative Breast Neoplasms/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , CD8-Positive T-Lymphocytes/metabolism , Orientation, Spatial , Immunotherapy , Disease Progression , Lymphocytes/metabolism , Indomethacin/pharmacology , Indomethacin/metabolism , Indomethacin/therapeutic use
12.
Antioxidants (Basel) ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35204265

ABSTRACT

Donors of nitroxyl (HNO), the one electron-reduction product of nitric oxide (NO.), positively modulate cardiac contractility/relaxation while limiting ischemia-reperfusion (I/R) injury. The mechanisms underpinning HNO anti-ischemic effects remain poorly understood. Using isolated perfused rat hearts subjected to 30 min global ischemia/1 or 2 h reperfusion, here we tested whether, in analogy to NO., HNO protection requires PKCε translocation to mitochondria and KATP channels activation. To this end, we compared the benefits afforded by ischemic preconditioning (IPC; 3 cycles of I/R) with those eventually granted by the NO. donor, diethylamine/NO, DEA/NO, and two chemically unrelated HNO donors: Angeli's salt (AS, a prototypic donor) and isopropylamine/NO (IPA/NO, a new HNO releaser). All donors were given for 19 min before I/R injury. In control I/R hearts (1 h reperfusion), infarct size (IS) measured via tetrazolium salt staining was 66 ± 5.5% of the area at risk. Both AS and IPA/NO were as effective as IPC in reducing IS [30.7 ± 2.2 (AS), 31 ± 2.9 (IPA/NO), and 31 ± 0.8 (IPC), respectively)], whereas DEA/NO was significantly less so (36.2 ± 2.6%, p < 0.001 vs. AS, IPA/NO, or IPC). IPA/NO protection was still present after 120 min of reperfusion, and the co-infusion with the PKCε inhibitor (PKCV1-2500 nM) prevented it (IS = 30 ± 0.5 vs. 61 ± 1.8% with IPA/NO alone, p < 0.01). Irrespective of the donor, HNO anti-ischemic effects were insensitive to the KATP channel inhibitor, 5-OH decanoate (5HD, 100 µM), that, in contrast, abrogated DEA/NO protection. Finally, both HNO donors markedly enhanced the mitochondrial permeability transition pore (mPTP) ROS threshold over control levels (≅35-40%), an action again insensitive to 5HD. Our study shows that HNO donors inhibit mPTP opening, thus limiting myocyte loss at reperfusion, a beneficial effect that requires PKCε translocation to the mitochondria but not mitochondrial K+ channels activation.

13.
Inorg Chem ; 60(21): 15941-15947, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34694129

ABSTRACT

The mechanistic roles of nitric oxide (NO) during cancer progression have been important considerations since its discovery as an endogenously generated free radical. Nonetheless, the impacts of this signaling molecule can be seemingly contradictory, being both pro-and antitumorigenic, which complicates the development of cancer treatments based on the modulation of NO fluxes in tumors. At a fundamental level, low levels of NO drive oncogenic pathways, immunosuppression, metastasis, and angiogenesis, while higher levels lead to apoptosis and reduced hypoxia and also sensitize tumors to conventional therapies. However, clinical outcome depends on the type and stage of the tumor as well as the tumor microenvironment. In this Viewpoint, the current understanding of the concentration, spatial, and temporal dependence of responses to NO is correlated with potential treatment and prevention technologies and strategies.


Subject(s)
Nitric Oxide
14.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209132

ABSTRACT

The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.


Subject(s)
Neoplasms/immunology , Nitric Oxide/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology , Animals , Humans , Neoplasms/pathology
15.
J Inorg Biochem ; 210: 111133, 2020 09.
Article in English | MEDLINE | ID: mdl-32619898

ABSTRACT

Nitric oxide (NO) and nitroxyl (HNO) have gained broad attention due to their roles in several physiological and pathophysiological processes. Remarkably, these sibling species can exhibit opposing effects including the promotion of angiogenic activity by NO compared to HNO, which blocks neovascularization. While many NO donors have been developed over the years, interest in HNO has led to the recent emergence of new donors. However, in both cases there is an expressive lack of iron-based compounds. Herein, we explored the novel chemical reactivity and stability of the trans-[Fe(cyclam)(NO)Cl]Cl2 (cyclam = 1,4,8,11-tetraazacyclotetradecane) complex. Interestingly, the half-life (t1/2) for NO release was 1.8 min upon light irradiation, vs 5.4 h upon thermal activation at 37 °C. Importantly, spectroscopic evidence supported the generation of HNO rather than NO induced by glutathione. Moreover, we observed significant inhibition of NO donor- or hypoxia-induced HIF-1α (hypoxia-inducible factor 1α) accumulation in breast cancer cells, as well as reduced vascular tube formation by endothelial cells pretreated with the trans-[Fe(cyclam)(NO)Cl]Cl2 complex. Together, these studies provide the first example of an iron-nitrosyl complex with anti-angiogenic activity as well as the potential dual activity of this compound as a NO/HNO releasing agent, which warrants further pharmacological investigation.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Coordination Complexes/pharmacology , Nitric Oxide Donors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/radiation effects , Animals , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Glutathione/chemistry , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Iron/chemistry , Iron/radiation effects , Mice , Nitric Oxide/metabolism , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/radiation effects , Nitrogen Oxides/metabolism , Rats , Temperature , Ultraviolet Rays , Vasodilator Agents/chemical synthesis , Vasodilator Agents/pharmacology , Vasodilator Agents/radiation effects
16.
J Vis Exp ; (157)2020 03 20.
Article in English | MEDLINE | ID: mdl-32250353

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited therapeutic options. When compared to patients with less aggressive breast tumors, the 5-year survival rate of TNBC patients is 77% due to their characteristic drug-resistant phenotype and metastatic burden. Toward this end, murine models have been established aimed at identifying novel therapeutic strategies limiting TNBC tumor growth and metastatic spread. This work describes a practical guide for the TNBC orthotopic model where MDA-MB-231 breast cancer cells suspended in a basement membrane matrix are implanted in the fourth mammary fat pad, which closely mimics the cancer cell behavior in humans. Measurement of tumors by caliper, lung metastasis assessment via in vivo and ex vivo imaging, and molecular detection are discussed. This model provides an excellent platform to study therapeutic efficacy and is especially suitable for the study of the interaction between the primary tumor and distal metastatic sites.


Subject(s)
Triple Negative Breast Neoplasms/pathology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Lung Neoplasms/secondary , Mice , Phenotype , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Xenograft Model Antitumor Assays
17.
Redox Biol ; 28: 101354, 2020 01.
Article in English | MEDLINE | ID: mdl-31683257

ABSTRACT

The role of nitric oxide (NO) in cancer progression has largely been studied in the context of tumor NOS2 expression. However, pro- versus anti-tumor signaling is also affected by tumor cell-macrophage interactions. While these cell-cell interactions are partly regulated by NO, the functional effects of NO flux on proinflammatory (M1) macrophages are unknown. Using a triple negative murine breast cancer model, we explored the potential role of macrophage Nos2 on 4T1 tumor progression. The effects of NO on macrophage phenotype were examined in bone marrow derived macrophages from wild type and Nos2-/- mice following in vitro stimulation with cytokine/LPS combinations to produce low, medium, and high NO flux. Remarkably, Nos2 induction was spatially distinct, where Nos2high cells expressed low cyclooxygenase-2 (Cox2) and vice versa. Importantly, in vitro M1 polarization with IFNγ+LPS induced high NO flux that was restricted to cells harboring depolarized mitochondria. This flux altered the magnitude and spatial extent of hypoxic gradients. Metabolic and single cell analyses demonstrated that single cell Nos2 induction limited the generation of hypoxic gradients in vitro, and Nos2-dependent and independent features may collaborate to regulate M1 functionality. It was found that Cox2 expression was important for Nos2high cells to maintain NO tolerance. Furthermore, Nos2 and Cox2 expression in 4T1 mouse tumors was spatially orthogonal forming distinct cellular neighborhoods. In summary, the location and type of Nos2high cells, NO flux, and the inflammatory status of other cells, such as Cox2high cells in the tumor niche contribute to Nos2 inflammatory mechanisms that promote disease progression of 4T1 tumors.


Subject(s)
Cytokines/metabolism , Lipopolysaccharides/adverse effects , Nitric Oxide Synthase Type II/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic/drug effects , Macrophages/drug effects , Macrophages/immunology , Mice , Neoplasm Transplantation , Nitric Oxide/metabolism , Single-Cell Analysis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
18.
Cancer Immunol Immunother ; 68(11): 1805-1817, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31628526

ABSTRACT

Antibodies targeting the T-cell immune checkpoint cytotoxic T-lymphocyte antigen-4 (CTLA4) enhance the effectiveness of radiotherapy for melanoma patients, but many remain resistant. To further improve response rates, we explored combining anti-CTLA4 blockade with antisense suppression of CD47, an inhibitory receptor on T cells that limit T-cell receptor signaling and killing of irradiated target cells. Human melanoma data from The Cancer Genome Atlas revealed positive correlations between CD47 mRNA expression and expression of T-cell regulators including CTLA4 and its counter receptors CD80 and CD86. Antisense suppression of CD47 on human T cells in vitro using a translational blocking morpholino (CD47 m) alone or combined with anti-CTLA4 enhanced antigen-dependent killing of irradiated melanoma cells. Correspondingly, the treatment of locally irradiated B16F10 melanomas in C57BL/6 mice using combined blockade of CD47 and CTLA4 significantly increased the survival of mice relative to either treatment alone. CD47 m alone or in combination with anti-CTLA4 increased CD3+ T-cell infiltration in irradiated tumors. Anti-CTLA4 also increased CD3+ and CD8+ T-cell infiltration as well as markers of NK cells in non-irradiated tumors. Anti-CTLA4 combined with CD47 m resulted in the greatest increase in intratumoral granzyme B, interferon-γ, and NK-cell marker mRNA expression. These data suggest that combining CTLA4 and CD47 blockade could provide a survival benefit by enhancing adaptive T- and NK-cell immunity in irradiated tumors.


Subject(s)
CD47 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Ipilimumab/administration & dosage , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma, Experimental/mortality , T-Lymphocytes, Cytotoxic/immunology , Animals , CD47 Antigen/genetics , CD47 Antigen/immunology , Combined Modality Therapy , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/radiation effects , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Radiation Dosage , Survival Rate , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/radiation effects , Tumor Cells, Cultured
19.
Redox Biol ; 22: 101158, 2019 04.
Article in English | MEDLINE | ID: mdl-30852389

ABSTRACT

Pancreatic cancer is a highly metastatic tumor with an extremely low 5-year survival rate. Lack of efficient diagnostics and dearth of effective therapeutics that can target the cancer as well as the microenvironment niche are the reasons for limited success in treatment and management of this disease. Cell invasion through extracellular matrix (ECM) involves the complex regulation of adhesion to and detachment from ECM and its understanding is critical to metastatic potential of pancreatic cancer. To understand the characteristics of these cancer cells and their ability to metastasize, we compared human pancreatic cancer cell line, PANC-1 and its invading phenotype (INV) collected from transwell inserts. The invasive cell type, INV, exhibited higher resistance to Carbon-ion radiation compared to whole cultured (normally dish-cultured) PANC-1 (WCC), and had more efficient in vitro spheroid formation capability. Invasiveness of INV was hampered by nitric oxide synthase (NOS) inhibitors, suggesting that nitric oxide (NO) plays a cardinal role in PANC-1 invasion. In addition, in vitro studies indicated that a MEK-ERK-dependent, JAK independent mechanism through which NOS/NO modulate PANC-1 invasiveness. Suspended INV showed enhanced NO production as well as induction of several pro-metastatic, and stemness-related genes. NOS inhibitor, l-NAME, reduced the expression of these pro-metastatic or stemness-related genes, and dampened spheroid formation ability, suggesting that NO can potentially influence pancreatic cancer aggressiveness. Furthermore, xenograft studies with INV and WCC in NSG mouse model revealed a greater ability of INV compared to WCC, to metastasize to the liver and l-NAME diminished the metastatic lesions in mice injected with INV. Overall, data suggest that NO is a key player associated with resistance to radiation and metastasis of pancreatic cancer; and inhibition of NOS demonstrates therapeutic potential as observed in the animal model by specifically targeting the metastatic cells that harbor stem-like features and are potentially responsible for relapse.


Subject(s)
Nitric Oxide/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Animals , Cell Line, Tumor , Disease Models, Animal , Fluorescent Antibody Technique , Humans , MAP Kinase Signaling System , Male , Mice , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Nitric Oxide Synthase/metabolism
20.
Antioxid Redox Signal ; 30(8): 1124-1143, 2019 03 10.
Article in English | MEDLINE | ID: mdl-29634348

ABSTRACT

SIGNIFICANCE: Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES: NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS: Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.


Subject(s)
Neoplasms/metabolism , Nitric Oxide/metabolism , Reactive Nitrogen Species/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Nitric Oxide Synthase Type II/metabolism , Prognosis , Signal Transduction , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...