Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(12): eadd5028, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36947620

ABSTRACT

Endothelial cells (ECs) grant access of disseminated cancer cells to distant organs. However, the molecular players regulating the activation of quiescent ECs at the premetastatic niche (PMN) remain elusive. Here, we find that ECs at the PMN coexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its cognate death receptor 5 (DR5). Unexpectedly, endothelial TRAIL interacts intracellularly with DR5 to prevent its signaling and preserve a quiescent vascular phenotype. In absence of endothelial TRAIL, DR5 activation induces EC death and nuclear factor κB/p38-dependent EC stickiness, compromising vascular integrity and promoting myeloid cell infiltration, breast cancer cell adhesion, and metastasis. Consistently, both down-regulation of endothelial TRAIL at the PMN by proangiogenic tumor-secreted factors and the presence of the endogenous TRAIL inhibitors decoy receptor 1 (DcR1) and DcR2 favor metastasis. This study discloses an intracrine mechanism whereby TRAIL blocks DR5 signaling in quiescent endothelia, acting as gatekeeper of the vascular barrier that is corrupted by the tumor during cancer cell dissemination.


Subject(s)
Breast Neoplasms , Endothelial Cells , Humans , Female , Endothelial Cells/metabolism , Ligands , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand , Apoptosis/genetics , Tumor Necrosis Factor-alpha/pharmacology
2.
Nat Cancer ; 4(3): 344-364, 2023 03.
Article in English | MEDLINE | ID: mdl-36732635

ABSTRACT

Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.


Subject(s)
Lysine Acetyltransferases , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Acetylation , Acetyl Coenzyme A/metabolism , Palmitates , Lysine Acetyltransferases/metabolism
5.
Nat Metab ; 4(6): 693-710, 2022 06.
Article in English | MEDLINE | ID: mdl-35760868

ABSTRACT

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Pyrroline Carboxylate Reductases/metabolism , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Collagen/metabolism , Extracellular Matrix/metabolism , Female , Glutamine/metabolism , Humans , Proline , delta-1-Pyrroline-5-Carboxylate Reductase
6.
Nature ; 605(7911): 747-753, 2022 05.
Article in English | MEDLINE | ID: mdl-35585241

ABSTRACT

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Phosphoglycerate Dehydrogenase , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Female , Gene Silencing , Humans , Mice , Phosphoglycerate Dehydrogenase/genetics , Serine/metabolism
7.
Mol Cancer Ther ; 21(4): 568-581, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35149549

ABSTRACT

Clinical use of doxorubicin (Dox) is limited by cumulative myelo- and cardiotoxicity. This research focuses on the detailed characterization of PhAc-ALGP-Dox, a targeted tetrapeptide prodrug with a unique dual-step activation mechanism, designed to circumvent Dox-related toxicities and is ready for upcoming clinical investigation. Coupling Dox to a phosphonoacetyl (PhAc)-capped tetrapeptide forms the cell-impermeable, inactive compound, PhAc-ALGP-Dox. After extracellular cleavage by tumor-enriched thimet oligopeptidase-1 (THOP1), a cell-permeable but still biologically inactive dipeptide-conjugate is formed (GP-Dox), which is further processed intracellularly to Dox by fibroblast activation protein-alpha (FAPα) and/or dipeptidyl peptidase-4 (DPP4). In vitro, PhAc-ALGP-Dox is effective in various 2D- and 3D-cancer models, while showing improved safety toward normal epithelium, hematopoietic progenitors, and cardiomyocytes. In vivo, these results translate into a 10-fold higher tolerability and 5-fold greater retention of Dox in the tumor microenvironment compared with the parental drug. PhAc-ALGP-Dox demonstrates 63% to 96% tumor growth inhibition in preclinical models, an 8-fold improvement in efficacy in patient-derived xenograft (PDX) models, and reduced metastatic burden in a murine model of experimental lung metastasis, improving survival by 30%. The current findings highlight the potential clinical benefit of PhAc-ALGP-Dox, a targeted drug-conjugate with broad applicability, favorable tissue biodistribution, significantly improved tolerability, and tumor growth inhibition at primary and metastatic sites in numerous solid tumor models.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Prodrugs , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Humans , Lung Neoplasms/drug therapy , Mice , Prodrugs/pharmacology , Prodrugs/therapeutic use , Therapeutic Index , Tissue Distribution , Tumor Microenvironment
8.
Sci Adv ; 7(19)2021 05.
Article in English | MEDLINE | ID: mdl-33962944

ABSTRACT

Unbalanced immune responses to pathogens can be life-threatening although the underlying regulatory mechanisms remain unknown. Here, we show a hypoxia-inducible factor 1α-dependent microRNA (miR)-210 up-regulation in monocytes and macrophages upon pathogen interaction. MiR-210 knockout in the hematopoietic lineage or in monocytes/macrophages mitigated the symptoms of endotoxemia, bacteremia, sepsis, and parasitosis, limiting the cytokine storm, organ damage/dysfunction, pathogen spreading, and lethality. Similarly, pharmacologic miR-210 inhibition improved the survival of septic mice. Mechanistically, miR-210 induction in activated macrophages supported a switch toward a proinflammatory state by lessening mitochondria respiration in favor of glycolysis, partly achieved by downmodulating the iron-sulfur cluster assembly enzyme ISCU. In humans, augmented miR-210 levels in circulating monocytes correlated with the incidence of sepsis, while serum levels of monocyte/macrophage-derived miR-210 were associated with sepsis mortality. Together, our data identify miR-210 as a fine-tuning regulator of macrophage metabolism and inflammatory responses, suggesting miR-210-based therapeutic and diagnostic strategies.


Subject(s)
MicroRNAs , Sepsis , Animals , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Monocytes/metabolism , Sepsis/genetics , Sepsis/metabolism
9.
STAR Protoc ; 2(2): 100481, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33982015

ABSTRACT

Tumor-associated macrophages (TAMs) are highly heterogenous regarding their intratumoral localization, surface marker expression, and molecular properties. This protocol describes the complete procedure for isolation and digestion of murine breast cancer samples and fluorescence-activated cell sorting (FACS) of TAMs from murine orthotopic 4T1 breast tumors. This includes steps to separate PoEMs (podoplanin-expressing macrophages) and non-PoEMs (podoplanin-negative macrophages). Our FACS separation approach could also be used for other tumor types with TAM infiltration. For complete details on the use and execution of this protocol, please refer to Bieniasz-Krzywiec et al. (2019).


Subject(s)
Breast Neoplasms , Flow Cytometry/methods , Tumor-Associated Macrophages/cytology , Animals , Breast Neoplasms/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Culture Techniques , Cell Line, Tumor , Cells, Cultured , Female , Mice , Tumor-Associated Macrophages/chemistry
10.
EMBO Mol Med ; 12(10): e11210, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32885605

ABSTRACT

Glutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2-like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti-tumor, M1-like, tumor-associated macrophages (TAMs). From this basis, we evaluated the pharmacological potential of GS inhibitors in targeting metastasis, identifying glufosinate as a specific human GS inhibitor. Glufosinate was tested in both cultured macrophages and on mice bearing metastatic lung, skin and breast cancer. We found that glufosinate rewires macrophages toward an M1-like phenotype both at the primary tumor and metastatic site, countering immunosuppression and promoting vessel sprouting. This was also accompanied to a reduction in cancer cell intravasation and extravasation, leading to synchronous and metachronous metastasis growth inhibition, but no effects on primary tumor growth. Glufosinate treatment was well-tolerated, without liver and brain toxicity, nor hematopoietic defects. These results identify GS as a druggable enzyme to rewire macrophage functions and highlight the potential of targeting metabolic checkpoints in macrophages to treat cancer metastasis.


Subject(s)
Breast Neoplasms , Macrophages , Aminobutyrates , Animals , Female , Humans , Inflammation Mediators , Mice
11.
Physiol Rev ; 100(1): 1-102, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31414610

ABSTRACT

It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.


Subject(s)
Hypoxia , Immunity , Immunotherapy , Neoplasms/therapy , Animals , Humans , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment
12.
Arterioscler Thromb Vasc Biol ; 38(5): 1216-1229, 2018 05.
Article in English | MEDLINE | ID: mdl-29449337

ABSTRACT

OBJECTIVE: ALK1 (activin-receptor like kinase 1) is an endothelial cell-restricted receptor with high affinity for BMP (bone morphogenetic protein) 9 TGF-ß (transforming growth factor-ß) family member. Loss-of-function mutations in ALK1 cause a subtype of hereditary hemorrhagic telangiectasia-a rare disease characterized by vasculature malformations. Therapeutic strategies are aimed at reducing potential complications because of vascular malformations, but currently, there is no curative treatment for hereditary hemorrhagic telangiectasia. APPROACH AND RESULTS: In this work, we report that a reduction in ALK1 gene dosage (heterozygous ALK1+/- mice) results in enhanced retinal endothelial cell proliferation and vascular hyperplasia at the sprouting front. We found that BMP9/ALK1 represses VEGF (vascular endothelial growth factor)-mediated PI3K (phosphatidylinositol 3-kinase) by promoting the activity of the PTEN (phosphatase and tensin homolog). Consequently, loss of ALK1 function in endothelial cells results in increased activity of the PI3K pathway. These results were confirmed in cutaneous telangiectasia biopsies of patients with hereditary hemorrhagic telangiectasia 2, in which we also detected an increase in endothelial cell proliferation linked to an increase on the PI3K pathway. In mice, genetic and pharmacological inhibition of PI3K is sufficient to abolish the vascular hyperplasia of ALK1+/- retinas and in turn normalize the vasculature. CONCLUSIONS: Overall, our results indicate that the BMP9/ALK1 hub critically mediates vascular quiescence by limiting PI3K signaling and suggest that PI3K inhibitors could be used as novel therapeutic agents to treat hereditary hemorrhagic telangiectasia.


Subject(s)
Activin Receptors, Type II/genetics , Activin Receptors, Type I/genetics , Endothelial Cells/enzymology , Mutation , Neovascularization, Pathologic , Phosphatidylinositol 3-Kinase/metabolism , Retinal Telangiectasis/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Activin Receptors, Type I/deficiency , Angiogenesis Inhibitors/pharmacology , Animals , Case-Control Studies , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/pathology , Enzyme Activation , Gene Deletion , Genetic Predisposition to Disease , Growth Differentiation Factor 2/pharmacology , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hyperplasia , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Retinal Telangiectasis/drug therapy , Retinal Telangiectasis/enzymology , Retinal Telangiectasis/pathology , Signal Transduction , Telangiectasia, Hereditary Hemorrhagic/drug therapy , Telangiectasia, Hereditary Hemorrhagic/enzymology , Telangiectasia, Hereditary Hemorrhagic/pathology , Vascular Endothelial Growth Factor A/pharmacology
13.
Cell Rep ; 20(7): 1654-1666, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28813676

ABSTRACT

Glutamine-synthetase (GS), the glutamine-synthesizing enzyme from glutamate, controls important events, including the release of inflammatory mediators, mammalian target of rapamycin (mTOR) activation, and autophagy. However, its role in macrophages remains elusive. We report that pharmacologic inhibition of GS skews M2-polarized macrophages toward the M1-like phenotype, characterized by reduced intracellular glutamine and increased succinate with enhanced glucose flux through glycolysis, which could be partly related to HIF1α activation. As a result of these metabolic changes and HIF1α accumulation, GS-inhibited macrophages display an increased capacity to induce T cell recruitment, reduced T cell suppressive potential, and an impaired ability to foster endothelial cell branching or cancer cell motility. Genetic deletion of macrophagic GS in tumor-bearing mice promotes tumor vessel pruning, vascular normalization, accumulation of cytotoxic T cells, and metastasis inhibition. These data identify GS activity as mediator of the proangiogenic, immunosuppressive, and pro-metastatic function of M2-like macrophages and highlight the possibility of targeting this enzyme in the treatment of cancer metastasis.


Subject(s)
Enzyme Inhibitors/pharmacology , Glutamate-Ammonia Ligase/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lung Neoplasms/drug therapy , Methionine Sulfoximine/pharmacology , Neovascularization, Pathologic/prevention & control , Animals , Cell Differentiation , Cell Line, Tumor , Cell Movement/drug effects , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/pathology , Glucose/metabolism , Glutamate-Ammonia Ligase/deficiency , Glutamine/metabolism , Glycolysis/drug effects , Glycolysis/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Injections, Subcutaneous , Interleukin-10/genetics , Interleukin-10/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , Monocytes/drug effects , Monocytes/immunology , Monocytes/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Primary Cell Culture , Succinic Acid/metabolism , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...