Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Soc Trans ; 51(6): 2153-2161, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37955101

ABSTRACT

Inorganic polyphosphate (polyP) is an ancient polymer that is well-conserved throughout evolution. It is formed by multiple subunits of orthophosphates linked together by phosphoanhydride bonds. The presence of these bonds, which are structurally similar to those found in ATP, and the high abundance of polyP in mammalian mitochondria, suggest that polyP could be involved in the regulation of the physiology of the organelle, especially in the energy metabolism. In fact, the scientific literature shows an unequivocal role for polyP not only in directly regulating oxidative a phosphorylation; but also in the regulation of reactive oxygen species metabolism, mitochondrial free calcium homeostasis, and the formation and opening of mitochondrial permeability transitions pore. All these processes are closely interconnected with the status of mitochondrial bioenergetics and therefore play a crucial role in maintaining mitochondrial and cell physiology. In this invited review, we discuss the main scientific literature regarding the regulatory role of polyP in mammalian mitochondrial physiology, placing a particular emphasis on its impact on energy metabolism. Although the effects of polyP on the physiology of the organelle are evident; numerous aspects, particularly within mammalian cells, remain unclear and require further investigation. These aspects encompass, for example, advancing the development of more precise analytical methods, unraveling the mechanism responsible for sensing polyP levels, and understanding the exact molecular mechanism that underlies the effects of polyP on mitochondrial physiology. By increasing our understanding of the biology of this ancient and understudied polymer, we could unravel new pharmacological targets in diseases where mitochondrial dysfunction, including energy metabolism dysregulation, has been broadly described.


Subject(s)
Mitochondria , Polyphosphates , Animals , Energy Metabolism , Mammals/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Polymers , Polyphosphates/metabolism
2.
Int J Mol Sci ; 24(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762163

ABSTRACT

Inorganic polyphosphate (polyP) is an evolutionarily conserved and ubiquitous polymer that is present in all studied organisms. PolyP consists of orthophosphates (Pi) linked together by phosphoanhydride bonds. The metabolism of polyP still remains poorly understood in higher eukaryotes. Currently, only F0F1-ATP synthase, Nudt3, and Prune have been proposed to be involved in this metabolism, although their exact roles and regulation in the context of polyP biology have not been fully elucidated. In the case of Prune, in vitro studies have shown that it exhibits exopolyphosphatase activity on very short-chain polyP (up to four units of Pi), in addition to its known cAMP phosphodiesterase (PDE) activity. Here, we expand upon studies regarding the effects of human Prune (h-Prune) on polyP metabolism. Our data show that recombinant h-Prune is unable to hydrolyze short (13-33 Pi) and medium (45-160 Pi) chains of polyP, which are the most common chain lengths of the polymer in mammalian cells. Moreover, we found that the knockdown of h-Prune (h-Prune KD) results in significantly decreased levels of polyP in HEK293 cells. Likewise, a reduction in the levels of polyP is also observed in Drosophila melanogaster loss-of-function mutants of the h-Prune ortholog. Furthermore, while the activity of ATP synthase, and the levels of ATP, are decreased in h-Prune KD HEK293 cells, the expression of ATP5A, which is a main component of the catalytic subunit of ATP synthase, is upregulated in the same cells, likely as a compensatory mechanism. Our results also show that the effects of h-Prune on mitochondrial bioenergetics are not a result of a loss of mitochondrial membrane potential or of significant changes in mitochondrial biomass. Overall, our work corroborates the role of polyP in mitochondrial bioenergetics. It also demonstrates a conserved effect of h-Prune on the metabolism of short- and medium-chain polyP (which are the predominant chain lengths found in mammalian cells). The effects of Prune in polyP are most likely exerted via the regulation of the activity of ATP synthase. Our findings pave the way for modifying the levels of polyP in mammalian cells, which could have pharmacological implications in many diseases where dysregulated bioenergetics has been demonstrated.

3.
Front Cell Dev Biol ; 11: 1302585, 2023.
Article in English | MEDLINE | ID: mdl-38161329

ABSTRACT

Introduction: Inorganic polyphosphate (polyP) is an ancient polymer which is extremely well-conserved throughout evolution, and found in every studied organism. PolyP is composed of orthophosphates linked together by high-energy bonds, similar to those found in ATP. The metabolism and the functions of polyP in prokaryotes and simple eukaryotes are well understood. However, little is known about its physiological roles in mammalian cells, mostly due to its unknown metabolism and lack of systematic methods and effective models for the study of polyP in these organisms. Methods: Here, we present a comprehensive set of genetically modified cellular models to study mammalian polyP. Specifically, we focus our studies on mitochondrial polyP, as previous studies have shown the potent regulatory role of mammalian polyP in the organelle, including bioenergetics, via mechanisms that are not yet fully understood. Results: Using SH-SY5Y cells, our results show that the enzymatic depletion of mitochondrial polyP affects the expression of genes involved in the maintenance of mitochondrial physiology, as well as the structure of the organelle. Furthermore, this depletion has deleterious effects on mitochondrial respiration, an effect that is dependent on the length of polyP. Our results also show that the depletion of mammalian polyP in other subcellular locations induces significant changes in gene expression and bioenergetics; as well as that SH-SY5Y cells are not viable when the amount and/or the length of polyP are increased in mitochondria. Discussion: Our findings expand on the crucial role of polyP in mammalian mitochondrial physiology and place our cell lines as a valid model to increase our knowledge of both mammalian polyP and mitochondrial physiology.

4.
Biology (Basel) ; 11(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36552279

ABSTRACT

The inorganic polymer, polyphosphate (polyP), is present in all organisms examined to date with putative functions ranging from the maintenance of bioenergetics to stress resilience and protein homeostasis. Bioenergetics in the glacier-obligate, segmented worm, Mesenchytraeus solifugus, is characterized by a paradoxical increase in intracellular ATP levels as temperatures decline. We show here that steady-state, mitochondrial polyP levels vary among species of Annelida, but were elevated only in M. solifugus in response to thermal stress. In contrast, polyP levels decreased with temperature in the mesophilic worm, Enchytraeus crypticus. These results identify fundamentally different bioenergetic strategies between closely related annelid worms, and suggest that I worm mitochondria maintain ATP and polyP in a dynamic equilibrium.

5.
Aging Cell ; 21(11): e13727, 2022 11.
Article in English | MEDLINE | ID: mdl-36219531

ABSTRACT

There is still a significant lack of knowledge regarding many aspects of the etiopathology and consequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. For example, the variety of molecular mechanisms mediating this infection, and the long-term consequences of the disease remain poorly understood. It first seemed like the SARS-CoV-2 infection primarily caused a serious respiratory syndrome. However, over the last years, an increasing number of studies also pointed towards the damaging effects of this infection has on the central nervous system (CNS). In fact, evidence suggests a possible disruption of the blood-brain barrier and deleterious effects on the CNS, especially in patients who already suffer from other pathologies, such as neurodegenerative disorders. The molecular mechanisms behind these effects on the CNS could involve the dysregulation of mitochondrial physiology, a well-known early marker of neurodegeneration and a hallmark of aging. Moreover, mitochondria are involved in the activation of the inflammatory response, which has also been broadly described in the CNS in COVID-19. Here, we critically review the current bibliography regarding the presence of neurodegenerative symptoms in COVID-19 patients, with a special emphasis on the mitochondrial mechanisms of these disorders.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Blood-Brain Barrier , Central Nervous System , Mitochondria
SELECTION OF CITATIONS
SEARCH DETAIL