Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Microbiol ; 80(12): 383, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870614

ABSTRACT

The disbalance of vaginal eubiotic microbiota can lead to overgrowth of Candida species and bacteria responsible for aerobic vaginitis, activating inflammatory pathways. The presence of Trichomonas vaginalis, a sexually transmitted protozoan pathogen, can be a predisposing factor for disordering the growth of bacterial/fungal pathogenic species due to the increase in pH and reduction of eubiotic microbiota. Herein, we evaluated the effects of the potent trichomonacidal compound, copper(II)-1,10-phenanthroline-5,6-dione (Cu-phendione), against pathogens responsible for candidiasis and aerobic vaginitis. Cu-phendione showed antimicrobial activity against Candida albicans, non-albicans Candida species (C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis) and Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus, Enterococcus faecalis, and Streptococcus agalactiae) bacteria. Moreover, Cu-phendione was able to interfere with the fungal biofilm formation. These results highlight the antimicrobial potential of Cu-phendione against bacterial and fungal strains of vaginitis-causing infectious agents.


Subject(s)
Anti-Infective Agents , Microbiota , Porifera , Vaginitis , Animals , Female , Humans , Copper/pharmacology , Copper/chemistry , Dysbiosis , Anti-Infective Agents/pharmacology , Bacteria , Candida , Candida glabrata , Biofilms
2.
Bioorg Chem ; 141: 106888, 2023 12.
Article in English | MEDLINE | ID: mdl-37839143

ABSTRACT

Trichomonas vaginalis, a flagellated and anaerobic protozoan, is a causative agent of trichomoniasis. This disease is among the world's most common non-viral sexually transmitted infection. A single class drug, nitroimidazoles, is currently available for the trichomoniasis treatment. However, resistant isolates have been identified from unsuccessfully treated patients. Thus, there is a great challenge for a discovery of innovative anti-T. vaginalis agents. As part of our ongoing search for antiprotozoal chalcones, we designed and synthesized a series of 21 phenolic chalcones, which were evaluated against T. vaginalis trophozoites. Structure-activity relationship indicated hydroxyl group plays a role key in antiprotozoal activity. 4'-Hydroxychalcone (4HC) was the most active compound (IC50 = 27.5 µM) and selected for detailed bioassays. In vitro and in vivo evaluations demonstrated 4HC was not toxic against human erythrocytes and Galleria mellonella larvae. Trophozoites of T. vaginalis were treated with 4HC and did not present significant reactive oxygen species (ROS) accumulation. However, compound 4HC was able to increase ROS accumulation in neutrophils coincubated with T. vaginalis. qRT-PCR Experiments indicated that 4HC did not affect the expression of pyruvate:ferredoxin oxidoreductase (PFOR) and ß-tubulin genes. In silico simulations, using purine nucleoside phosphorylase of T. vaginalis (TvPNP), corroborated 4HC as a promising ligand. Compound 4HC was able to establish interactions with residues D21, G20, M180, R28, R87 and T90 through hydrophobic interactions, π-donor hydrogen bond and hydrogen bonds. Altogether, these results open new avenues for phenolic chalcones to combat trichomoniasis, a parasitic neglected infection.


Subject(s)
Antiprotozoal Agents , Chalcones , Trichomonas Infections , Trichomonas vaginalis , Humans , Trichomonas vaginalis/metabolism , Chalcones/metabolism , Reactive Oxygen Species/metabolism , Trichomonas Infections/drug therapy , Trichomonas Infections/parasitology , Antiprotozoal Agents/metabolism , Phenols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL