Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37821229

ABSTRACT

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Subject(s)
Electronic Nicotine Delivery Systems , Habenula , Receptors, Purinergic P2 , Male , Adolescent , Female , Humans , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Synaptic Transmission , Cholinergic Neurons , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/pharmacology
2.
Front Cell Neurosci ; 17: 1160245, 2023.
Article in English | MEDLINE | ID: mdl-37293628

ABSTRACT

The ability to control synaptic communication is indispensable to modern neuroscience. Until recently, only single-pathway manipulations were possible due to limited availability of opsins activated by distinct wavelengths. However, extensive protein engineering and screening efforts have drastically expanded the optogenetic toolkit, ushering in an era of multicolor approaches for studying neural circuits. Nonetheless, opsins with truly discrete spectra are scarce. Experimenters must therefore take care to avoid unintended cross-activation of optogenetic tools (crosstalk). Here, we demonstrate the multidimensional nature of crosstalk in a single model synaptic pathway, testing stimulus wavelength, irradiance, duration, and opsin choice. We then propose a "lookup table" method for maximizing the dynamic range of opsin responses on an experiment-by-experiment basis.

3.
Neuron ; 110(22): 3760-3773.e5, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36087582

ABSTRACT

The integration of feedforward (sensory) and feedback (top-down) neuronal signals is a principal function of the neocortex. Yet, we have limited insight into how these information streams are combined by individual neurons. Using a two-color optogenetic strategy, we found that layer 5 pyramidal neurons in the posterior parietal cortex receive monosynaptic dual innervation, combining sensory inputs with top-down signals. Subclasses of layer 5 pyramidal neurons integrated these synapses with distinct temporal dynamics. Specifically, regular spiking cells exhibited supralinear enhancement of delayed-but not coincident-inputs, while intrinsic burst-firing neurons selectively boosted coincident synaptic events. These subthreshold integration characteristics translated to a nonlinear summation of action potential firing. Complementing electrophysiology with computational modeling, we found that distinct integration profiles arose from a cell-type-specific interaction of ionic mechanisms and feedforward inhibition. These data provide insight into the cellular properties that guide the nonlinear interaction of distinct long-range afferents in the neocortex.


Subject(s)
Pyramidal Cells , Synapses , Feedback , Pyramidal Cells/physiology , Action Potentials/physiology , Synapses/physiology , Parietal Lobe
4.
J Neurosci ; 41(24): 5173-5189, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33931552

ABSTRACT

We developed a method for single-cell resolution longitudinal bioluminescence imaging of PERIOD (PER) protein and TIMELESS (TIM) oscillations in cultured male adult Drosophila brains that captures circadian circuit-wide cycling under simulated day/night cycles. Light input analysis confirms that CRYPTOCHROME (CRY) is the primary circadian photoreceptor and mediates clock disruption by constant light (LL), and that eye light input is redundant to CRY; 3-h light phase delays (Friday) followed by 3-h light phase advances (Monday morning) simulate the common practice of staying up later at night on weekends, sleeping in later on weekend days then returning to standard schedule Monday morning [weekend light shift (WLS)]. PER and TIM oscillations are highly synchronous across all major circadian neuronal subgroups in unshifted light schedules for 11 d. In contrast, WLS significantly dampens PER oscillator synchrony and rhythmicity in most circadian neurons during and after exposure. Lateral ventral neuron (LNv) oscillations are the first to desynchronize in WLS and the last to resynchronize in WLS. Surprisingly, the dorsal neuron group-3 (DN3s) increase their within-group synchrony in response to WLS. In vivo, WLS induces transient defects in sleep stability, learning, and memory that temporally coincide with circuit desynchrony. Our findings suggest that WLS schedules disrupt circuit-wide circadian neuronal oscillator synchrony for much of the week, thus leading to observed behavioral defects in sleep, learning, and memory.


Subject(s)
Brain/physiopathology , Circadian Rhythm/physiology , Cryptochromes/metabolism , Drosophila Proteins/metabolism , Eye Proteins/metabolism , Nerve Net/physiopathology , Period Circadian Proteins/metabolism , Animals , Brain/metabolism , Drosophila , Learning/physiology , Male , Memory/physiology , Nerve Net/metabolism , Sleep/physiology
5.
Mol Biol Cell ; 31(8): 741-752, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32049581

ABSTRACT

Collective cell migration plays crucial roles in tissue remodeling, wound healing, and cancer cell invasion. However, its underlying mechanism remains unknown. Previously, we showed that the RhoA-targeting guanine nucleotide exchange factor Solo (ARHGEF40) is required for tensile force-induced RhoA activation and proper organization of keratin-8/keratin-18 (K8/K18) networks. Here, we demonstrate that Solo knockdown significantly increases the rate at which Madin-Darby canine kidney cells collectively migrate on collagen gels. However, it has no apparent effect on the migratory speed of solitary cultured cells. Therefore, Solo decelerates collective cell migration. Moreover, Solo localized to the anteroposterior regions of cell-cell contact sites in collectively migrating cells and was required for the local accumulation of K8/K18 filaments in the forward areas of the cells. Partial Rho-associated protein kinase (ROCK) inhibition or K18 or plakoglobin knockdown also increased collective cell migration velocity. These results suggest that Solo acts as a brake for collective cell migration by generating pullback force at cell-cell contact sites via the RhoA-ROCK pathway. It may also promote the formation of desmosomal cell-cell junctions related to K8/K18 filaments and plakoglobin.


Subject(s)
Cell Movement/physiology , Signal Transduction/physiology , rho GTP-Binding Proteins/physiology , rho-Associated Kinases/physiology , Amides/pharmacology , Animals , Cell Polarity , Collagen , Cytoskeleton/physiology , Desmosomes/physiology , Dogs , Gels , Gene Knockdown Techniques , Keratin-18/antagonists & inhibitors , Keratin-18/genetics , Keratin-18/physiology , Keratin-8/antagonists & inhibitors , Keratin-8/genetics , Keratin-8/physiology , Madin Darby Canine Kidney Cells , Pyridines/pharmacology , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Stress, Mechanical , Time-Lapse Imaging , gamma Catenin/antagonists & inhibitors , gamma Catenin/genetics , gamma Catenin/physiology , rac1 GTP-Binding Protein/physiology , rho GTP-Binding Proteins/antagonists & inhibitors , rhoA GTP-Binding Protein/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...