Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 387
1.
Int J Mol Sci ; 25(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38791593

Epidemiological evidence suggests existing comorbidity between postmenopausal osteoporosis (OP) and cardiovascular disease (CVD), but identification of possible shared genes is lacking. The skeletal global transcriptomes were analyzed in trans-iliac bone biopsies (n = 84) from clinically well-characterized postmenopausal women (50 to 86 years) without clinical CVD using microchips and RNA sequencing. One thousand transcripts highly correlated with areal bone mineral density (aBMD) were further analyzed using bioinformatics, and common genes overlapping with CVD and associated biological mechanisms, pathways and functions were identified. Fifty genes (45 mRNAs, 5 miRNAs) were discovered with established roles in oxidative stress, inflammatory response, endothelial function, fibrosis, dyslipidemia and osteoblastogenesis/calcification. These pleiotropic genes with possible CVD comorbidity functions were also present in transcriptomes of microvascular endothelial cells and cardiomyocytes and were differentially expressed between healthy and osteoporotic women with fragility fractures. The results were supported by a genetic pleiotropy-informed conditional False Discovery Rate approach identifying any overlap in single nucleotide polymorphisms (SNPs) within several genes encoding aBMD- and CVD-associated transcripts. The study provides transcriptional and genomic evidence for genes of importance for both BMD regulation and CVD risk in a large collection of postmenopausal bone biopsies. Most of the transcripts identified in the CVD risk categories have no previously recognized roles in OP pathogenesis and provide novel avenues for exploring the mechanistic basis for the biological association between CVD and OP.


Bone Density , Cardiovascular Diseases , Osteoporosis, Postmenopausal , Polymorphism, Single Nucleotide , Transcriptome , Humans , Female , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/pathology , Aged , Middle Aged , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Aged, 80 and over , Bone Density/genetics , Gene Expression Profiling , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics
2.
Biol Methods Protoc ; 9(1): bpae006, 2024.
Article En | MEDLINE | ID: mdl-38559752

One of the goals of the HORIZON 2020 project PoCOsteo was to develop a medical device, which would measure and/or quantify proteomic as well as genomic factors as present in whole blood samples collected through finger prick. After validating the tool in the clinical setting, the next step would be its clinical validation based on the existing guidelines. This article presents the protocol of a validation study to be carried out independently at two different centers (Division of Endocrinology and Diabetology at the Medical University of Graz as a clinic-based cohort, and the Endocrinology and Metabolism Research Institute at the Tehran University of Medical Sciences as a population-based cohort). It aims to assess the tool according to the Clinical & Laboratory Standards Institute guidelines, confirming if the proteomics and genomics measurements provided by the tool are accurate and reproducible compared with the existing state-of-the-art tests. This is the first time that such a detailed protocol for lab validation of a medical tool for proteomics and genomic measurement is designed based on the existing guidelines and thus could be used as a template for clinical validation of future point-of-care tools. Moreover, the multicentric cohort design will allow the study of a large number of diverse individuals, which will improve the validity and generalizability of the results for different settings.

3.
Arch Oral Biol ; 161: 105933, 2024 May.
Article En | MEDLINE | ID: mdl-38447351

OBJECTIVE: This systematic review summarizes the current knowledge on the association between the oral microbiota and dental caries in adolescents. DESIGN: An electronic search was carried out across five databases. Studies were included if they conducted research on generally healthy adolescents, applied molecular-based microbiological analyses and assessed caries status. Data extraction was performed by two reviewers and the Newcastle-Ottawa Scale was applied for quality assessment. RESULTS: In total, 3935 records were reviewed which resulted in a selection of 20 cross-sectional studies (published 2005-2022) with a sample size ranging from 11 to 614 participants including adolescents between 11 and 19 years. The studies analyzed saliva, dental biofilm or tongue swabs with Checkerboard DNA-DNA hybridization, (q)PCR or Next-Generation Sequencing methods. Prevotella denticola, Scardoviae Wiggsiae, Streptococcus sobrinus and Streptococcus mutans were the most frequently reported species presenting higher abundance in adolescents with caries. The majority of the studies reported that the microbial diversity was similar between participants with and without dental caries. CONCLUSION: This systematic review is the first that shows how the oral microbiota composition in adolescents appears to differ between those with and without dental caries, suggesting certain taxa may be associated with increased caries risk. However, there is a need to replicate and expand these findings in larger, longitudinal studies that also focus on caries severity and take adolescent-specific factors into account.


Dental Caries , Microbiota , Humans , Adolescent , Dental Caries/microbiology , Cross-Sectional Studies , Streptococcus mutans , Saliva/microbiology , DNA
4.
JAMA Netw Open ; 7(3): e243604, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38526491

Importance: Sarcopenia and obesity are 2 global concerns associated with adverse health outcomes in older people. Evidence on the population-based prevalence of the combination of sarcopenia with obesity (sarcopenic obesity [SO]) and its association with mortality are still limited. Objective: To investigate the prevalence of sarcopenia and SO and their association with all-cause mortality. Design, Setting, and Participants: This large-scale, population-based cohort study assessed participants from the Rotterdam Study from March 1, 2009, to June 1, 2014. Associations of sarcopenia and SO with all-cause mortality were studied using Kaplan-Meier curves, Cox proportional hazards regression, and accelerated failure time models fitted for sex, age, and body mass index (BMI). Data analysis was performed from January 1 to April 1, 2023. Exposures: The prevalence of sarcopenia and SO, measured based on handgrip strength and body composition (BC) (dual-energy x-ray absorptiometry) as recommended by current consensus criteria, with probable sarcopenia defined as having low handgrip strength and confirmed sarcopenia and SO defined as altered BC (high fat percentage and/or low appendicular skeletal muscle index) in addition to low handgrip strength. Main Outcome and Measure: The primary outcome was all-cause mortality, collected using linked mortality data from general practitioners and the central municipal records, until October 2022. Results: In the total population of 5888 participants (mean [SD] age, 69.5 [9.1] years; mean [SD] BMI, 27.5 [4.3]; 3343 [56.8%] female), 653 (11.1%; 95% CI, 10.3%-11.9%) had probable sarcopenia and 127 (2.2%; 95% CI, 1.8%-2.6%) had confirmed sarcopenia. Sarcopenic obesity with 1 altered component of BC was present in 295 participants (5.0%; 95% CI, 4.4%-5.6%) and with 2 altered components in 44 participants (0.8%; 95% CI, 0.6%-1.0%). An increased risk of all-cause mortality was observed in participants with probable sarcopenia (hazard ratio [HR], 1.29; 95% CI, 1.14-1.47) and confirmed sarcopenia (HR, 1.93; 95% CI, 1.53-2.43). Participants with SO plus 1 altered component of BC (HR, 1.94; 95% CI, 1.60-2.33]) or 2 altered components of BC (HR, 2.84; 95% CI, 1.97-4.11) had a higher risk of mortality than those without SO. Similar results for SO were obtained for participants with a BMI of 27 or greater. Conclusions and Relevance: In this study, sarcopenia and SO were found to be prevalent phenotypes in older people and were associated with all-cause mortality. Additional alterations of BC amplified this risk independently of age, sex, and BMI. The use of low muscle strength as a first step of both diagnoses may allow for early identification of individuals at risk for premature mortality.


Sarcopenia , Humans , Female , Aged , Male , Sarcopenia/complications , Sarcopenia/epidemiology , Cohort Studies , Hand Strength , Muscle Strength , Obesity/complications , Obesity/epidemiology
5.
Bone ; 182: 117070, 2024 May.
Article En | MEDLINE | ID: mdl-38460828

Bone Health Index (BHI) has been proposed as a useful instrument for assessing bone health in children. However, its relationship with fracture risk remains unknown. We aimed to investigate whether BHI is associated with bone mineral density (BMD) and prevalent fracture odds in children from the Generation R Study. We also implemented genome-wide association study (GWAS) and polygenic score (PGS) approaches to improve our understanding of BHI and its potential. In total, 4150 children (49.4 % boys; aged 9.8 years) with genotyped data and bone assessments were included in this study. BMD was measured across the total body (less head following ISCD guidelines) using a GE-Lunar iDXA densitometer; and BHI was determined from the hand DXA scans using BoneXpert®. Fractures were self-reported collected with home questionnaires. The association of BHI with BMD and fractures was evaluated using linear models corrected for age, sex, ethnicity, height, and weight. We observed a positive correlation between BHI and BMD (ρ = 0.32, p-value<0.0001). Further, every SD decrease in BHI was associated with an 11 % increased risk of prevalent fractures (OR:1.11, 95 % CI 1.00-1.24, p-value = 0.05). Our BHI GWAS identified variants (lead SNP rs1404264-A, p-value = 2.61 × 10-14) mapping to the ING3/CPED1/WNT16 locus. Children in the extreme tails of the BMD PGS presented a difference in BHI values of -0.10 standard deviations (95% CI -0.14 to -0.07; p-value<0.0001). On top of the demonstrated epidemiological association of BHI with both BMD and fracture risk, our results reveal a partially shared biological background between BHI and BMD. These findings highlight the potential value of using BHI to screen children at risk of fracture.


Bone Density , Fractures, Bone , Male , Child , Humans , Female , Bone Density/genetics , Genome-Wide Association Study , Fractures, Bone/epidemiology , Fractures, Bone/genetics , Absorptiometry, Photon/methods , Bone and Bones , Homeodomain Proteins , Tumor Suppressor Proteins
6.
J Bone Miner Res ; 39(4): 443-452, 2024 May 02.
Article En | MEDLINE | ID: mdl-38477752

Observational studies have reported inconsistent associations between bone mineral density (BMD) and coronary artery calcification (CAC). We examined the observational association of BMD with CAC in 2 large population-based studies and evaluated the evidence for a potential causal relation between BMD and CAC using polygenic risk scores (PRS), 1- and 2-sample Mendelian randomization (MR) approaches. Our study populations comprised 1414 individuals (mean age 69.9 yr, 52.0% women) from the Rotterdam Study and 2233 individuals (mean age 56.5 yr, 50.9% women) from the Framingham Heart Study with complete information on CAC and BMD measurements at the total body (TB-), lumbar spine (LS-), and femoral neck (FN-). We used linear regression models to evaluate the observational association between BMD and CAC. Subsequently, we compared the mean CAC across PRSBMD quintile groups at different skeletal sites. In addition, we used the 2-stage least squares regression and the inverse variance weighted (IVW) model as primary methods for 1- and 2-sample MR to test evidence for a potentially causal association. We did not observe robust associations between measured BMD levels and CAC. These results were consistent with a uniform random distribution of mean CAC across PRSBMD quintile groups (P-value > .05). Moreover, neither 1- nor 2-sample MR supported the possible causal association between BMD and CAC. Our results do not support the contention that lower BMD is (causally) associated with an increased CAC risk. These findings suggest that previously reported epidemiological associations of BMD with CAC are likely explained by unmeasured confounders or shared etiology, rather than by causal pathways underlying both osteoporosis and vascular calcification processes.


Decreased bone mineral density, the determinant of osteoporosis, and increased coronary artery calcification are common in people at an advanced age and share some common risk factors. Some studies have reported a higher risk for coronary artery calcification in people with osteoporosis than in people without, whereas others failed to find evidence for this relationship. Recently, Mendelian randomization has emerged as an important epidemiological tool that offers a simple way to distinguish causation, minimizing the confounding present in observational studies, leveraging individual genetic data and the findings from robust genome-wide association studies. We combined data from the participants of both the Rotterdam Study and the Framingham Heart Study, and did not observe sufficient evidence for the association between bone mineral density at different skeletal sites and coronary artery calcification. Also, when using Mendelian randomization, we concluded there was no causal relation between bone deterioration and the build-up of calcium in the coronary arteries. Although more research is needed, we conclude that the associations between decreased bone mineral density and increased coronary artery calcification reported in previous studies are likely attributed to other confounders rather than a causal relationship between these traits.


Bone Density , Coronary Artery Disease , Mendelian Randomization Analysis , Vascular Calcification , Humans , Bone Density/genetics , Female , Male , Middle Aged , Aged , Vascular Calcification/diagnostic imaging , Vascular Calcification/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/epidemiology , Coronary Vessels/pathology , Coronary Vessels/diagnostic imaging , Risk Factors
7.
Article En | MEDLINE | ID: mdl-38553405

Musculoskeletal research should synergistically investigate bone and muscle to inform approaches for maintaining mobility and to avoid bone fractures. The relationship between sarcopenia and osteoporosis, integrated in the term 'osteosarcopenia', is underscored by the close association shown between these two conditions in many studies, whereby one entity emerges as a predictor of the other. In a recent workshop of Working Group (WG) 2 of the EU Cooperation in Science and Technology (COST) Action 'Genomics of MusculoSkeletal traits Translational Network' (GEMSTONE) consortium (CA18139), muscle characterization was highlighted as being important, but currently under-recognized in the musculoskeletal field. Here, we summarize the opinions of the Consortium and research questions around translational and clinical musculoskeletal research, discussing muscle phenotyping in human experimental research and in two animal models: zebrafish and mouse.

8.
Eur J Epidemiol ; 39(2): 183-206, 2024 Feb.
Article En | MEDLINE | ID: mdl-38324224

The Rotterdam Study is a population-based cohort study, started in 1990 in the district of Ommoord in the city of Rotterdam, the Netherlands, with the aim to describe the prevalence and incidence, unravel the etiology, and identify targets for prediction, prevention or intervention of multifactorial diseases in mid-life and elderly. The study currently includes 17,931 participants (overall response rate 65%), aged 40 years and over, who are examined in-person every 3 to 5 years in a dedicated research facility, and who are followed-up continuously through automated linkage with health care providers, both regionally and nationally. Research within the Rotterdam Study is carried out along two axes. First, research lines are oriented around diseases and clinical conditions, which are reflective of medical specializations. Second, cross-cutting research lines transverse these clinical demarcations allowing for inter- and multidisciplinary research. These research lines generally reflect subdomains within epidemiology. This paper describes recent methodological updates and main findings from each of these research lines. Also, future perspective for coming years highlighted.


Health Personnel , Aged , Humans , Adult , Middle Aged , Cohort Studies , Netherlands/epidemiology
9.
Brain Behav Immun ; 118: 117-127, 2024 May.
Article En | MEDLINE | ID: mdl-38402916

Early-life stress (ELS) has been robustly associated with a range of poor mental and physical health outcomes. Recent studies implicate the gut microbiome in stress-related mental, cardio-metabolic and immune health problems, but research on humans is scarce and thus far often based on small, selected samples, often using retrospective reports of ELS. We examined associations between ELS and the human gut microbiome in a large, population-based study of children. ELS was measured prospectively from birth to 10 years of age in 2,004 children from the Generation R Study. We studied overall ELS, as well as unique effects of five different ELS domains, including life events, contextual risk, parental risk, interpersonal risk, and direct victimization. Stool microbiome was assessed using 16S rRNA sequencing at age 10 years and data were analyzed at multiple levels (i.e. α- and ß-diversity indices, individual genera and predicted functional pathways). In addition, we explored potential mediators of ELS-microbiome associations, including diet at age 8 and body mass index at 10 years. While no associations were observed between overall ELS (composite score of five domains) and the microbiome after multiple testing correction, contextual risk - a specific ELS domain related to socio-economic stress, including risk factors such as financial difficulties and low maternal education - was significantly associated with microbiome variability. This ELS domain was associated with lower α-diversity, with ß-diversity, and with predicted functional pathways involved, amongst others, in tryptophan biosynthesis. These associations were in part mediated by overall diet quality, a pro-inflammatory diet, fiber intake, and body mass index (BMI). These results suggest that stress related to socio-economic adversity - but not overall early life stress - is associated with a less diverse microbiome in the general population, and that this association may in part be explained by poorer diet and higher BMI. Future research is needed to test causality and to establish whether modifiable factors such as diet could be used to mitigate the negative effects of socio-economic adversity on the microbiome and related health consequences.


Adverse Childhood Experiences , Gastrointestinal Microbiome , Child , Humans , Gastrointestinal Microbiome/genetics , Retrospective Studies , RNA, Ribosomal, 16S/genetics , Feces
10.
Genome Med ; 16(1): 10, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38200577

BACKGROUND: Type 2 diabetes (T2D) is a heterogeneous and polygenic disease. Previous studies have leveraged the highly polygenic and pleiotropic nature of T2D variants to partition the heterogeneity of T2D, in order to stratify patient risk and gain mechanistic insight. We expanded on these approaches by performing colocalization across GWAS traits while assessing the causality and directionality of genetic associations. METHODS: We applied colocalization between T2D and 20 related metabolic traits, across 243 loci, to obtain inferences of shared casual variants. Network-based unsupervised hierarchical clustering was performed on variant-trait associations. Partitioned polygenic risk scores (PRSs) were generated for each cluster using T2D summary statistics and validated in 21,742 individuals with T2D from 3 cohorts. Inferences of directionality and causality were obtained by applying Mendelian randomization Steiger's Z-test and further validated in a pediatric cohort without diabetes (aged 9-12 years old, n = 3866). RESULTS: We identified 146 T2D loci that colocalized with at least one metabolic trait locus. T2D variants within these loci were grouped into 5 clusters. The clusters corresponded to the following pathways: obesity, lipodystrophic insulin resistance, liver and lipid metabolism, hepatic glucose metabolism, and beta-cell dysfunction. We observed heterogeneity in associations between PRSs and metabolic measures across clusters. For instance, the lipodystrophic insulin resistance (Beta - 0.08 SD, 95% CI [- 0.10-0.07], p = 6.50 × 10-32) and beta-cell dysfunction (Beta - 0.10 SD, 95% CI [- 0.12, - 0.08], p = 1.46 × 10-47) PRSs were associated to lower BMI. Mendelian randomization Steiger analysis indicated that increased T2D risk in these pathways was causally associated to lower BMI. However, the obesity PRS was conversely associated with increased BMI (Beta 0.08 SD, 95% CI 0.06-0.10, p = 8.0 × 10-33). Analyses within a pediatric cohort supported this finding. Additionally, the lipodystrophic insulin resistance PRS was associated with a higher odds of chronic kidney disease (OR 1.29, 95% CI 1.02-1.62, p = 0.03). CONCLUSIONS: We successfully partitioned T2D genetic variants into phenotypic pathways using a colocalization first approach. Partitioned PRSs were associated to unique metabolic and clinical outcomes indicating successful partitioning of disease heterogeneity. Our work expands on previous approaches by providing stronger inferences of shared causal variants, causality, and directionality of GWAS variant-trait associations.


Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Child , Diabetes Mellitus, Type 2/genetics , Genetic Risk Score , Insulin Resistance/genetics , Cluster Analysis , Obesity/genetics
11.
J Am Geriatr Soc ; 72(1): 194-200, 2024 01.
Article En | MEDLINE | ID: mdl-37933827

BACKGROUND: It is not known whether bone mineral density (BMD) measured at baseline or as the rate of decline prior to baseline (prior bone loss) is a stronger predictor of incident dementia or Alzheimer's disease (AD). METHODS: We performed a meta-analysis of three longitudinal studies, the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Rush Memory and Aging Project (MAP), modeling the time to diagnosis of dementia as a function of BMD measures accounting for covariates. We included individuals with one or two BMD assessments, aged ≥60 years, and free of dementia at baseline with follow-up available. BMD was measured at the hip femoral neck using dual-energy X-ray absorptiometry (DXA), or at the heel calcaneus using quantitative ultrasound to calculate estimated BMD (eBMD). BMD at study baseline ("baseline BMD") and annualized percentage change in BMD prior to baseline ("prior bone loss") were included as continuous measures. The primary outcome was incident dementia diagnosis within 10 years of baseline, and incident AD was a secondary outcome. Baseline covariates included age, sex, body mass index, ApoE4 genotype, and education. RESULTS: The combined sample size across all three studies was 4431 with 606 incident dementia diagnoses, 498 of which were AD. A meta-analysis of baseline BMD across three studies showed higher BMD to have a significant protective association with incident dementia with a hazard ratio of 0.47 (95% CI: 0.23-0.96; p = 0.038) per increase in g/cm2 , or 0.91 (95% CI: 0.84-0.995) per standard deviation increase. We observed a significant association between prior bone loss and incident dementia with a hazard ratio of 1.30 (95% CI: 1.12-1.51; p < 0.001) per percent increase in prior bone loss only in the FHS cohort. CONCLUSIONS: Baseline BMD but not prior bone loss was associated with incident dementia in a meta-analysis across three studies.


Alzheimer Disease , Bone Diseases, Metabolic , Humans , Bone Density , Absorptiometry, Photon , Longitudinal Studies
12.
ERJ Open Res ; 9(5)2023 Sep.
Article En | MEDLINE | ID: mdl-37753286

Background: Sarcopenia is characterised by two major phenotypic components: low handgrip strength (HGS) and appendicular skeletal muscle index (ASMI). Oral corticosteroid (OCS) use is an important medication for acute respiratory exacerbations in patients with COPD and asthma. However, the association of OCS and sarcopenia components in older people is largely unexplored. The aim of this study was to examine the association between OCS use and HGS or ASMI in the general population and explore interactions with chronic airway diseases. Methods: From the population-based Rotterdam Study, 5054 participants (age 69.0±8.8 years; 56% females) were included in the cross-sectional analysis and 1324 in the longitudinal analysis. Associations between OCS and muscle strength and mass were analysed using linear regression models adjusted for age, sex, fat %, height, kidney function, smoking and comorbidities. Results: At baseline, ever-OCS users had lower handgrip strength (ß= -0.48, 95% CI -0.84- -0.12) than never-OCS users, with cumulative frequency (≥10 OCS prescriptions)-dependent effects (ß= -1.25, 95% CI -2.16- -0.33). COPD ever-OCS users, but not asthma, had lower handgrip strength (ß= -0.98, 95% CI -1.91- -0.06) and lower lean mass (ß= -0.14, 95% CI -0.27- -0.01) than never-OCS users. After 5.6 years of follow-up in those free of sarcopenia traits at baseline, COPD ever-OCS users developed lower handgrip strength (ß= -1.64, 95% CI -2.87- -0.40) with frequency (ß= -3.64, 95% CI -6.57- -0.72) and duration (ß= -1.51, 95% CI -2.87- -0.15) association compared to never-OCS users. Conclusions: OCS use is associated with a decline in handgrip strength in people with COPD in a cumulative frequency and duration-dependent manner. Routine muscle examination may be necessary for patients with COPD.

13.
Genes (Basel) ; 14(8)2023 08 01.
Article En | MEDLINE | ID: mdl-37628624

Background: Although common drugs for treating type 2 diabetes (T2D) are widely used, their therapeutic effects vary greatly. The interaction between the gut microbiome and glucose-lowering drugs is one of the main contributors to the variability in T2D progression and response to therapy. On the one hand, glucose-lowering drugs can alter gut microbiome components. On the other hand, specific gut microbiota can influence glycemic control as the therapeutic effects of these drugs. Therefore, this systematic review assesses the bi-directional relationships between common glucose-lowering drugs and gut microbiome profiles. Methods: A systematic search of Embase, Web of Science, PubMed, and Google Scholar databases was performed. Observational studies and randomised controlled trials (RCTs), published from inception to July 2023, comprising T2D patients and investigating bi-directional interactions between glucose-lowering drugs and gut microbiome, were included. Results: Summarised findings indicated that glucose-lowering drugs could increase metabolic-healthy promoting taxa (e.g., Bifidobacterium) and decrease harmful taxa (e.g., Bacteroides and Intestinibacter). Our findings also showed a significantly different abundance of gut microbiome taxa (e.g., Enterococcus faecium (i.e., E. faecium)) in T2D patients with poor compared to optimal glycemic control. Conclusions: This review provides evidence for glucose-lowering drug and gut microbiome interactions, highlighting the potential of gut microbiome modulators as co-adjuvants for T2D treatment.


Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Bacteroides , Bifidobacterium , Diabetes Mellitus, Type 2/drug therapy , Glucose
14.
ACS Cent Sci ; 9(8): 1591-1602, 2023 Aug 23.
Article En | MEDLINE | ID: mdl-37637735

Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3€ per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.

15.
Clin Oral Investig ; 27(7): 3379-3392, 2023 Jul.
Article En | MEDLINE | ID: mdl-37301790

OBJECTIVES: Oral conditions are of high prevalence and chronic character within the general population. Identifying the risk factors and determinants of oral disease is important, not only to reduce the burden of oral diseases, but also to improve (equal access to) oral health care systems, and to develop effective oral health promotion programs. Longitudinal population-based (birth-)cohort studies are very suitable to study risk factors on common oral diseases and have the potential to emphasize the importance of a healthy start for oral health. In this paper, we provide an overview of the comprehensive oral and craniofacial dataset that has been collected in the Generation R study: a population-based prospective birth cohort in the Netherlands that was designed to identify causes of health from fetal life until adulthood. METHODS: Within the multidisciplinary context of the Generation R study, oral and craniofacial data has been collected from the age of 3 years onwards, and continued at the age of six, nine, and thirteen. Data collection is continuing in 17-year-old participants. RESEARCH OUTCOMES: In total, the cohort population comprised 9749 children at birth, and 7405 eligible participants at the age of seventeen. Based on questionnaires, the dataset contains information on oral hygiene, dental visits, oral habits, oral health-related quality of life, orthodontic treatment, and obstructive sleep apnea. Based on direct measurements, the dataset contains information on dental caries, developmental defects of enamel, objective orthodontic treatment need, dental development, craniofacial characteristics, mandibular cortical thickness, and 3D facial measurements. CONCLUSIONS: Several research lines have been set up using the oral and craniofacial data linked with the extensive data collection that exists within the Generation R study. CLINICAL RELEVANCE: Being embedded in a multidisciplinary and longitudinal birth cohort study allows researchers to study several determinants of oral and craniofacial health, and to provide answers and insight into unknown etiologies and oral health problems in the general population.


Dental Caries , Mouth Diseases , Child , Infant, Newborn , Humans , Adult , Child, Preschool , Adolescent , Dental Caries/epidemiology , Cohort Studies , Quality of Life , Prospective Studies , Oral Health
16.
Neurology ; 100(20): e2125-e2133, 2023 05 16.
Article En | MEDLINE | ID: mdl-36948596

BACKGROUND AND OBJECTIVES: Low bone mineral density (BMD) and dementia commonly co-occur in older individuals, with bone loss accelerating in patients with dementia due to physical inactivity and poor nutrition. However, uncertainty persists over the extent to which bone loss already exists before onset of dementia. Therefore, we investigated how dementia risk was affected by BMD at various skeletal regions in community-dwelling older adults. METHODS: In a prospective population-based cohort study, BMD at the femoral neck, lumbar spine, and total body and the trabecular bone score (TBS) were obtained using dual-energy X-ray absorptiometry in 3,651 participants free from dementia between 2002 and 2005. Persons at risk of dementia were followed up until January 1, 2020. For analyses of the association between BMD at baseline and the risk of incident dementia, we used Cox proportional hazards regression analyses, adjusting for age, sex, educational attainment, physical activity, smoking status, body mass index, systolic and diastolic blood pressure, cholesterol level, high-density lipoprotein cholesterol, history of comorbidities (stroke and diabetes mellitus), and APOE genotype. RESULTS: Among the 3,651 participants (median age 72.3 ± 10.0 years, 57.9% women), 688 (18.8%) developed incident dementia during a median of 11.1 years, of whom 528 (76.7%) developed Alzheimer disease (AD). During the whole follow-up period, participants with lower BMD at the femoral neck (per SD decrease) were more likely to develop all-cause dementia (hazard ratio [HR] total follow-up 1.12, 95% CI 1.02-1.23) and AD (HRtotal follow-up 1.14, 95% CI 1.02-1.28). Within the first 10 years after baseline, the risk of dementia was greatest for groups with the lowest tertile of BMD (femoral neck BMD, HR0-10 years 2.03; 95% CI 1.39-2.96; total body BMD, HR0-10 years 1.42; 95% CI 1.01-2.02; and TBS, HR0-10 years 1.59; 95% CI 1.11-2.28). DISCUSSION: In conclusion, participants with low femoral neck and total body BMD and low TBS were more likely to develop dementia. Further studies should focus on the predictive ability of BMD for dementia.


Bone Diseases, Metabolic , Dementia , Humans , Female , Aged , Middle Aged , Aged, 80 and over , Male , Bone Density/physiology , Cohort Studies , Prospective Studies , Absorptiometry, Photon , Lumbar Vertebrae , Cholesterol , Dementia/diagnostic imaging , Dementia/epidemiology
17.
Br J Dermatol ; 188(3): 390-395, 2023 02 22.
Article En | MEDLINE | ID: mdl-36763776

BACKGROUND: Looking older for one's chronological age is associated with a higher mortality rate. Yet it remains unclear how perceived facial age relates to morbidity and the degree to which facial ageing reflects systemic ageing of the human body. OBJECTIVES: To investigate the association between ΔPA and age-related morbidities of different organ systems, where ΔPA represents the difference between perceived age (PA) and chronological age. METHODS: We performed a cross-sectional analysis on data from the Rotterdam Study, a population-based cohort study in the Netherlands. High-resolution facial photographs of 2679 men and women aged 51.5-87.8 years of European descent were used to assess PA. PA was estimated and scored in 5-year categories using these photographs by a panel of men and women who were blinded for chronological age and medical history. A linear mixed model was used to generate the mean PAs. The difference between the mean PA and chronological age was calculated (ΔPA), where a higher (positive) ΔPA means that the person looks younger for their age and a lower (negative) ΔPA that the person looks older. ΔPA was tested as a continuous variable for association with ageing-related morbidities including cardiovascular, pulmonary, ophthalmological, neurocognitive, renal, skeletal and auditory morbidities in separate regression analyses, adjusted for age and sex (model 1) and additionally for body mass index, smoking and sun exposure (model 2). RESULTS: We observed 5-year higher ΔPA (i.e. looking younger by 5 years for one's age) to be associated with less osteoporosis [odds ratio (OR) 0.76, 95% confidence interval (CI) 0.62-0.93], less chronic obstructive pulmonary disease (OR 0.85, 95% CI 0.77-0.95), less age-related hearing loss (model 2; B = -0.76, 95% CI -1.35 to -0.17) and fewer cataracts (OR 0.84, 95% CI 0.73-0.97), but with better global cognitive functioning (g-factor; model 2; B = 0.07, 95% CI 0.04-0.10). CONCLUSIONS: PA is associated with multiple morbidities and better cognitive function, suggesting that systemic ageing and cognitive ageing are, to an extent, externally visible in the human face.


Aging , Skin Aging , Aged , Middle Aged , Male , Humans , Female , Cohort Studies , Cross-Sectional Studies , Facies , Morbidity
18.
HGG Adv ; 4(1): 100163, 2023 01 12.
Article En | MEDLINE | ID: mdl-36568030

Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of ∼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants.


Exome , Genome-Wide Association Study , Humans , Exome/genetics , Body Mass Index , Quantitative Trait Loci/genetics , Anthropometry , Intercellular Signaling Peptides and Proteins , Cell Cycle Proteins
19.
J Gerontol A Biol Sci Med Sci ; 78(2): 349-356, 2023 02 24.
Article En | MEDLINE | ID: mdl-36226677

BACKGROUND: The aging population and its burden on health care systems warrant early detection of patients at risk of functional decline and mortality. We aimed to assess frailty transitions and its accuracy for mortality prediction in participants with impaired spirometry (Preserved Ratio Impaired Spirometry [PRISm] or chronic obstructive pulmonary disease [COPD]). METHODS: In participants from the population-based Rotterdam Study (mean age 69.1 ± 8.9 years), we examined whether PRISm (forced expiratory volume in 1 second [FEV1]/forced vital capacity [FVC] ≥ 70% and FEV1 < 80%) or COPD (FEV1/FVC < 70%) affected frailty transitions (progression/recovery between frailty states [robust, prefrailty, and frailty], lost to follow-up, or death) using age-, sex- and smoking state-adjusted multinomial regression models yielding odds ratios (OR). Second, we assessed the diagnostic accuracy of frailty score for predicting mortality in participants with COPD using c-statistics. RESULTS: Compared to participants with normal spirometry, participants with PRISm were more likely to transit from robust (OR 2.2 [1.2-4.2], p < .05) or prefrailty (OR 2.6 [1.3-5.5], p < .01) toward frailty. Participants with PRISm (OR 0.4 [0.2-0.8], p < .05) and COPD (OR 0.6 [0.4-1.0], NS) were less likely to recover from their frail state, and were more likely to progress from any frailty state toward death (OR between 1.1 and 2.8, p < .01). Accuracy for predicting mortality in participants with COPD significantly improved when adding frailty score to age, sex, and smoking status (90.5 [82.3-89.8] vs 77.9 [67.2-88.6], p < .05). CONCLUSION: Participants with PRISm or COPD more often developed frailty with poor reversibility. Assessing physical frailty improved risk stratification for participants with impaired spirometry for predicting increased life years.


Frailty , Pulmonary Disease, Chronic Obstructive , Humans , Aged , Aged, 80 and over , Frailty/diagnosis , Forced Expiratory Volume , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/diagnosis , Vital Capacity , Spirometry , Lung
20.
Brain Behav Immun ; 108: 188-196, 2023 Feb.
Article En | MEDLINE | ID: mdl-36494050

The link between the gut microbiome and the brain has gained increasing scientific and public interest for its potential to explain psychiatric risk. While differences in gut microbiome composition have been associated with several mental health problems, evidence to date has been largely based on animal models and human studies with modest sample sizes. In this cross-sectional study in 1,784 ten-year-old children from the multi-ethnic, population-based Generation R Study, we aimed to characterize associations of the gut microbiome with child mental health problems. Gut microbiome was assessed from stool samples using 16S rRNA sequencing. We focused on overall psychiatric symptoms as well as with specific domains of emotional and behavioral problems, assessed via the maternally rated Child Behavior Checklist. While we observed lower gut microbiome diversity in relation to higher overall and specific mental health problems, associations were not significant. Likewise, we did not identify any taxonomic feature associated with mental health problems after multiple testing correction, although suggestive findings indicated depletion of genera previously associated with psychiatric disorders, including Hungatella, Anaerotruncus and Oscillospiraceae. The identified compositional abundance differences were found to be similar across all mental health problems. Finally, we did not find significant enrichment for specific microbial functions in relation to mental health problems. In conclusion, based on the largest sample examined to date, we do not find clear evidence of associations between gut microbiome diversity, taxonomies or functions and mental health problems in the general pediatric population. In future, the use of longitudinal designs with repeated measurements of microbiome and psychiatric outcomes will be critical to identify whether and when associations between the gut microbiome and mental health emerge across development and into adulthood.


Gastrointestinal Microbiome , Mental Disorders , Animals , Humans , Child , Gastrointestinal Microbiome/genetics , Mental Health , Cross-Sectional Studies , RNA, Ribosomal, 16S/genetics
...