Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 73(16): 5146-52, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17586666

ABSTRACT

Prior research revealed that Polaromonas naphthalenivorans CJ2 carries and expresses genes encoding the gentisate metabolic pathway for naphthalene. These metabolic genes are split into two clusters, comprising nagRAaGHAbAcAdBFCQEDJI'-orf1-tnpA and nagR2-orf2I''KL (C. O. Jeon, M. Park, H. Ro, W. Park, and E. L. Madsen, Appl. Environ. Microbiol. 72:1086-1095, 2006). BLAST homology searches of sequences in GenBank indicated that the orf2 gene from the small cluster likely encoded a salicylate 5-hydroxylase, presumed to catalyze the conversion of salicylate into gentisate. Here, we report physiological and genetic evidence that orf2 does not encode salicylate 5-hydroxylase. Instead, we have found that orf2 encodes 3-hydroxybenzoate 6-hydroxylase, the enzyme which catalyzes the NADH-dependent conversion of 3-hydroxybenzoate into gentisate. Accordingly, we have renamed orf2 nagX. After expression in Escherichia coli, the NagX enzyme had an approximate molecular mass of 43 kDa, as estimated by gel filtration, and was probably a monomeric protein. The enzyme was able to convert 3-hydroxybenzoate into gentisate without salicylate 5-hydroxylase activity. Like other 3-hydroxybenzoate 6-hydroxylases, NagX utilized both NADH and NADPH as electron donors and exhibited a yellowish color, indicative of a bound flavin adenine dinucleotide. An engineered mutant of P. naphthalenivorans CJ2 defective in nagX failed to grow on 3-hydroxybenzoate but grew normally on naphthalene. These results indicate that the previously described small catabolic cluster in strain CJ2 may be multifunctional and is essential for the degradation of 3-hydroxybenzoate. Because nagX and an adjacent MarR-type regulatory gene are both closely related to homologues in Azoarcus species, this study raises questions about horizontal gene transfer events that contribute to operon evolution.


Subject(s)
Bacterial Proteins/metabolism , Comamonadaceae/enzymology , Mixed Function Oxygenases/metabolism , Bacterial Proteins/genetics , Comamonadaceae/genetics , Comamonadaceae/growth & development , Dicarboxylic Acids/chemistry , Dicarboxylic Acids/metabolism , Electrophoresis, Polyacrylamide Gel , Fumarates/chemistry , Fumarates/metabolism , Gene Deletion , Gentisates/chemistry , Gentisates/metabolism , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Mixed Function Oxygenases/genetics , Models, Genetic , Molecular Structure , Mutation , Naphthalenes/chemistry , Naphthalenes/metabolism , Pimelic Acids/chemistry , Pimelic Acids/metabolism , Pyruvates/chemistry , Pyruvates/metabolism , Recombinant Proteins/metabolism
2.
Appl Environ Microbiol ; 72(2): 1086-95, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16461653

ABSTRACT

Polaromonas naphthalenivorans CJ2, found to be responsible for the degradation of naphthalene in situ at a coal tar waste-contaminated site (C.-O. Jeon et al., Proc. Natl. Acad. Sci. USA 100:13591-13596, 2003), is able to grow on mineral salts agar media with naphthalene as the sole carbon source. Beginning from a 484-bp nagAc-like region, we used a genome walking strategy to sequence genes encoding the entire naphthalene degradation pathway andadditional flanking regions. We found that the naphthalene catabolic genes in P. naphthalenivorans CJ2 were divided into one large and one small gene cluster, separated by an unknown distance. The large gene cluster (nagRAaGHAbAcAdBFCQEDJI'ORF1tnpA) is bounded by a LysR-type regulator (nagR). The small cluster (nagR2ORF2I"KL) is bounded by a MarR-type regulator (nagR2). The catabolic genes of P. naphthalenivorans CJ2 were homologous to many of those of Ralstonia U2, which uses the gentisate pathway to convert naphthalene to central metabolites. However, three open reading frames (nagY, nagM, and nagN), present in Ralstonia U2, were absent. Also, P. naphthalenivorans carries two copies of gentisate dioxygenase (nagI) with 77.4% DNA sequence identity to one another and 82% amino acid identity to their homologue in Ralstonia sp. strain U2. Investigation of the operons using reverse transcription PCR showed that each cluster was controlled independently by its respective promoter. Insertional inactivation and lacZ reporter assays showed that nagR2 is a negative regulator and that expression of the small cluster is not induced by naphthalene, salicylate, or gentisate. Association of two putative Azoarcus-related transposases with the large cluster and one Azoarcus-related putative salicylate 5-hydroxylase gene (ORF2) in the small cluster suggests that mobile genetic elements were likely involved in creating the novel arrangement of catabolic and regulatory genes in P. naphthalenivorans.


Subject(s)
Comamonadaceae/genetics , Comamonadaceae/metabolism , Genes, Bacterial , Naphthalenes/metabolism , Azoarcus/genetics , Base Sequence , Biodegradation, Environmental , Chromosomes, Bacterial/genetics , Comamonadaceae/growth & development , DNA, Bacterial/genetics , Environmental Pollutants/metabolism , Gene Expression , Genes, Regulator , Molecular Sequence Data , Multigene Family , Mutagenesis , Phenotype , Promoter Regions, Genetic , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL